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1 Introduction

Nature comprises a multitude of critical phenomena. Spontaneous symmetry breaking at
the origin of the universe and gravitation collapse [1], [2] are spectacular examples. Crit-
ical phenomena occur at phase transitions. Theories of phase transitions use methods of
catastrophe theory and also of theory of percolation which currently attract considerable
attention.

In order to understand critical phenomena, investigations of liquid-liquid phase transi-
tions in binary and ternary mixtures are very instructive. Especially the understanding of
the phase behavior and the critical phenomena in ternary mixtures, biophysics and mem-
brane physics have attracted attention during the last years [3], [4], [5]. The essential and
most amazing feature of critical phenomena was the discovery of critical point universal-
ity indicating that the microscopic structure of fluids becomes unimportant in the vicinity
of the critical point. The understanding of such phenomena is also of great importance for
chemistry and chemical engineering in procedures like liquid and solid extraction, drying,
absorption, distillation and many other chemical reaction processes, as well as for biology
in operations like fermentation, biological filtration and syntheses. Moreover, theories of
critical phenomena are substantial for many innovative applications such as supercritical
extraction, enhanced oil recovery and supercritical pollution oxidation. The importance of
the understanding and application of critical phenomena is demonstrated by the recently
(08.28.07) provided studies1 performed in the International Space Station (ISS). The fo-
cus of those investigations were the critical phenomena, in particular the critical slowing
down of the phase separation near the critical point of binary colloid-polymer mixtures in
a micro gravity environment. The aim of such investigations was to develop fundamental
physical concepts previously which had so far been masked by gravity effects.

A first qualitative description of the critical behavior of some special systems was al-
ready given at the beginning of last century. Examples are liquid/gas transition and the
ferro/paramagnetism transition [6]. An essential step towards a deeper understanding of
critical behavior was made by Landau’s general theory of phase transitions [7]. Later
the theory has been further developed by Onsager, which found the exact solution [8] for

1National Aeronautics and Space Administration (NASA) Expeditions Assigned. Previous studies on crit-
ical systems in micro gravity environment have been performed on in 1997 and 1998 on MIR,Source:
http://www.nasa.gov.
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1 Introduction

the thermodynamic properties of a two-dimensional Ising model, that had been frequently
discussed. It was a great surprise to find the theory of Landau to fail completely in predict-
ing the behavior close to the critical point. Fisher, played a leading role by his analysis of
experimental data, combining theoretical analysis and numerical calculations, [9], [10],
[11]. Important theoretical contributions have been made by Widom [12], Patashinskii
and Pokrovski [13], and most important by Kadanoff, [14]. Kadanoff put forward a very
important new and original idea which seemed to have a strong influence on the later de-
velopment of the field. However, his theory did not allow to calculate the critical behavior.
The problem was solved in a comprehensive and profound way by Wilson [15]. Wilson
was the first to realize that critical phenomena are different from most other phenomena
in physics in that close to the critical point one has to deal with fluctuations over widely
different scales of length. Nevertheless, investigations which have been performed on
critical system have indicated the description of their behavior is not sufficient for a wide
temperature range. The range between the background and mean-field behavior could
not be described satisfactorily by classic theories of critical phenomena. Consequently,
a new formalism has been developed by Albright [68], Burstyn, Sengers, Bhattacharjee
and Ferrell, [16], [17], to describe the range between the consolute point and background
behavior. This formalism is named crossover theory.

The ideas of universality appear to be also applicable to phase transitions in complex
fluids like polymers and polymer solutions, micro-emulsions and liquid crystals, fluids
in porous media as well as phospholipid bilayer vesicle solutions. Besides dynamic light
scattering an important measurement method to study the cooperative effects in complex
fluids is the broad band ultrasonic spectroscopy. Being a non-destructive technique it al-
lows for the measurement of chemical relaxations as well as critical fluctuations. During
the past decades various theories have been developed to treat the critical slowing down of
the critical ultrasonic attenuation in binary liquids within the framework of the dynamic
scaling theory. The most prominent examples of the dynamic scaling theory have been
presented by Bhattacharjee and Ferrell [18], [19], [20], [21], [22]. Folk and Moser [23],
[24] developed a renormalization group theory of the mode-coupling model and Onuki
[25], [26] derived a model from an intuitive description of the bulk viscosity near the
critical point. The verification, with the aid of dynamic light scattering and shear vis-
cosity measurements as well as with broad band ultrasonic measurements, of the validity
of these dynamic scaling functions of various critical mixtures was one of the aims of
the present thesis. Essential quantities are the characteristic relaxation timeΓ, the fluc-
tuations correlation lengthξ, the mutual diffusion coefficientD, as well as the reduced
half-attenuation frequencyΩ1/2, the adiabatic coupling constantg, and the critical ampli-
tudeS of the ultrasonic attenuation spectra. Also considered was the coupling between
the critical contributions and the noncritical relaxations due to chemical processes, as well
as the predictions by Procaccia et al. [27], on the critical slowing of those chemical re-
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actions which might occur when a system is approaching its critical demixing point. An
additional emphasis of studies of binary mixtures was the verification of the before men-
tioned crossover theory, with cut-off wave numbersqc andqD as substantial parameters.
Investigations on ternary mixtures with different compositions along the plait line were
performed to determine the validity of the dynamic scaling hypothesis, especially the de-
pendence of critical quantities on the concentration of the additional third component.
With the ternary mixtures special attention has been paid to the crossover behavior, which
had been first considered for binary systems.

3





2 Thermodynamics of Critical
Phenomena

In this Chapter the theoretical background of the thermodynamics of critical phenomena
in binary and ternary liquid systems, phase transitions as well as the static and dynamic
scaling hypotheses are presented. Furthermore, critical exponents and their important
role for the description of second order phase transitions are shown. Moreover, typical
binary and ternary phase diagrams are presented.

2.1 Phase transitions

Figure 2.1:
Discontinuous and
continuous shape of
the entropy of phase
transitions: discont.
∆S 6= 0 ⇔ ∆Q = T0∆S;
cont. S is a continuous
function ofT ⇒ ∆Q = 0

The first attempt to classify phase transitions was
done by Ehrenfest (1933). The Ehrenfest classifica-
tion scheme was based on grouping of phase transi-
tions into their degree of non-analyticity. Phase tran-
sitions were labeled by the lowest derivative of the
Gibbs free energyG(T, p) that is discontinuous at the
phase transition. Taking a closer look at the increas-
ing degree of derivation, the differences between the
phases on consideration get smaller. In fact, it is nec-
essary to raise the question about the sense of differing
between phases in this way. It is more practicable to
consider derivatives of lower degree only. This leads
to the description of so-calledfirst-order phase tran-
sitions or discontinuous phase transitions. Charac-
teristic of first-order phase transitions is the disconti-
nuity of the first derivation of the Gibbs free energy
G(T, p). Within the scope of critical phenomena in
liquids, another kind of phase transitions plays an im-
portant role, the so-calledsecond-order phase transi-
tions or thecontinuous phase transitions(see Fig.(2.1)). In this case, the first derivative
of Gibbs free energy is continuous and especially in liquid systems the conception of
latent heat does no longer exist. Another characteristic parameter of continuous phase

5



2 Thermodynamics of Critical Phenomena

transitions is the so-calledorder parameter. An order parameter is a macroscopic quan-
tity which describes the degree of order, or vice versa, the degree of disorder of the ther-
modynamic system. In a many-particle system two opposite tendencies concur against
each other. This behavior can be found in the free energyF = U −TS. HereU denotes
the inner energy, andS the entropy . In thermodynamic equilibrium, the free energyF
has to reach a minimum. This can be realized with smaller inner energyU (high order
of a system) or higher entropyS (smaller order of a system). Consequently, the tem-
peratureT is the decisive parameter. Liquid-liquid phase transitions, transitions from
homogenous state into a heterogonous state of a liquid, lead to a symmetry breakage of
the system. In binary as well as ternary liquid systems the difference in the mole frac-
tion of a constituent in the different phases∆x = x′− x′′ represents an order parameter.
An important role in the treatment and classification of phase transitions plays the crite-
rion of stability. According to the second law of thermodynamics, the free energyF is
a stability parameter of a mixture. One can make a distinction between three different
kinds of stability [28], the thermal stability (∂2F/∂T2)V < 0, the mechanic stability
(∂2F/∂V2)T < 0 and thedynamic stability (∂2F/∂x2)V,T > 0. In Fig.(2.2) the criterion
of dynamic stability is illustrated, with the aid of free energy of mixing for ideal solution
Fm(x) = NAkBT[(1− x) ln(1− x) + xln(x)], whereNA is the Avogadro constant andkB

Boltzmann’s constant. The region between pointsB andC in Fig.(2.2) represents the un-
stable range of the isobar-isotherm. Outside this area, the criterion of stability is fulfilled.
The pointsA andD, which are resulting from the construction of the double-tangent line,
represents the equilibrium of the coexisting phases at the mole fractions ofx′ andx′′, re-
spectively . This area corresponds with the so-calledbinodal of the phase diagram of
a binary system. The areas betweenA andB as well asC andD are representing the
meta-stable range, corresponding with the area between the so-calledspinodal and the
binodal. At the spinodal an interesting phenomenon occurs at phase transitions. Other
than at a binodal, in the meta-stable range the solution separates spontaneously into two
phases, starting with small fluctuations and proceeding with a decrease in the Gibbs free
energyG, G= H−TS(here isH the enthalpy), without a nucleation barrier. Considering
now the Gibbs free energy at constant temperature and constant pressure, the following
distinctions can be done:

(∂2G/∂x2)T,p > 0 stable and meta-stable (2.1)

(∂2G/∂x2)T,p < 0 unstable (2.2)

(∂2G/∂x2)T,p = 0 spinodal. (2.3)

Changing of composition of the binary system or changing the temperatureT, leads to
the merge of pointsB andC as wellA andD. At this so-calledcritical point the criterion
of stability as well the criterion of equilibrium is fulfilled.
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2.2 Critical fluctuations

Figure 2.2: Isobar-isotherm path through the space of states of free energy of mixing
Fm(p,T,x).

2.2 Critical fluctuations

Thecorrelation function of a physical parameterX is represented by:

g(~r,~r ′) = 〈x(~r),x(~r ′)〉−〈x(~r)〉〈x(~r ′)〉, (2.4)

herex(~r) denotes the density of the quantityX. Hence,X can be expressed as:

X =
∫

d3rx(~r). (2.5)

The functiong(~r,~r ′) represents the degree of correlation between the values ofX at~r and
at~r ′. The variables in Eq.(2.4) can be replaced by the particles densityx(~r)→ n(~r) and
the number of particlesX→N. In other words, with increasing distance between the den-
sities of particlesn(~r) and the densities ofn(~r ′) the correlation decreases. This behavior
can be written as:

7



2 Thermodynamics of Critical Phenomena

〈n(~r)n(~r ′)〉 |~r−
~r ′|→∞−→

(
N
V

)2

. (2.6)

An expression, which describes this kind of behavior and its temperature dependence, has
been presented by Ornstein and Zernike (1914) [29]:

g(~r,~r ′) = const.
1

|~r−~r ′|
·exp

(
−|~r−

~r ′|
ξ(T)

)
(2.7)

Equation (2.7) represents the so-calledOrnstein-Zernike-behavior. It includes thecor-
relation length ξ(T), which measures the strength of loss in correlation. This characteris-
tic length scale is an important parameter, within the framework of critical phenomena of
second order phase transitions.ξ(T) divergences near the critical point that is atT → Tc

follows ξ(T)→ ∞. HereTc denotescritical temperature . This behavior is described
by the termcritical fluctuations . These fluctuations tend to mask the individual char-
acteristics of particle interactions. Moreover, in the range of critical fluctuations striking
similarity of systems emerges which are otherwise quite different. This behavior is char-
acteristic forcritical phenomena.

2.3 Critical phenomena

The similarity of different systems mentioned in Section (2.2) can be described byuni-
versal power lawswhich determine the thermodynamic and transport properties close to
a critical point.

2.3.1 Critical exponents

In order to study the critical behavior in different systems it is convenient to use the so-
calledreduced temperature:

ε≡ |T−Tc|
Tc

. (2.8)

When the temperatureT of a system is close to its critical temperatureTc, some relevant
parametersF follow a power law:

F(ε) = aεϕ(1+bex + ...), (2.9)

with x > 0. At ε→ 0, that isT → Tc, all terms except the 1 in the brackets disappear.
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2.3 Critical phenomena

Therefore,F satisfies the power law:

F(ε)∼ εϕ, (2.10)

with ϕ, denoting the critical exponent for the particular variableF.

2.3.2 Static scaling hypothesis

In the course of the last fifty years theoretical and experimental investigations have been
done to develop and to proof the hypothesis of universality. In 1965 Widom [12] pos-
tulated the so-calledscaling hypothesis, which is based on the assumption, that the sin-
gularities of different thermodynamic quantities near the critical point are represented by
their generalized homogenous functions. WhenF denotes the free energy andε the re-
duced temperature, it follows:

F(λε) = g(λ)F(ε). (2.11)

It means, when the parameterλ scales the reduced temperatureε, thanλ likewise scales
the function ofε. Furthermore, ifµ is an additional scaled variable of the functiong, than
from Eq.(2.11) follows the relation:

F(λ(µε)) = g(λ)g(µ)F(ε) = g(λµ)F(ε). (2.12)

Comparison of the factors of the function ofF(ε) implies that the relationg(λ)g(µ) =
g(λµ) is only valid wheng follows a power law. Hence, Eq.(2.11) can be written as:

F(λε) = λaF(ε), here isa the degree of homogeneity. (2.13)

From such mathematical considerations follows that differentials as well as integrals of
homogenous functions are again homogenous functions. Consequently, it can be assumed
that all thermodynamical quantities, which are derived from the free energyF , can be rep-
resented by power laws. Furthermore, the static scaling hypothesis provides also relations
between the critical exponents of different parameters (see Table (2.1), for the meaning
of the symbols):

2− α̃0 = β(δ+1) (2.14)

2− α̃0 = ν̃ (2.15)

2− α̃0 = γ+2β (2.16)

9



2 Thermodynamics of Critical Phenomena

exponent order-parameter relation
α̃0 CV specific heat capacity CV ∼ ε−α̃0

β ρ2−ρ1 density ρ2−ρ1∼ εβ

γ κT compressibility κT ∼ ε−γ

δ (p− pc) pressure (p− pc)∼±|ρ2−ρ1|δ
ν̃ ξ correlation length ξ∼ ε−ν̃

σ g(~r, t) correlation function g(~r,ε)∼ |~r|−(d−2+σ)

Table 2.1: Various critical relations and their order-parameters.

In 1971 therenormalization group method has been developed by Wilson [15] to calcu-
late the critical exponents. This theory showed that the critical exponents depend only on
the spacial dimensionalityd and the numbern of components of a system. Moreover, the
essential message of those considerations was that phase transitions with the same dimen-
sionality of the order parameter belong to the sameuniversality class. Various critical
exponents of systems and their order-parameter are represented in Table (2.1).

2.3.3 Dynamic scaling hypothesis and critical slowing down

In different investigations it has been found that, close to the critical point, various proper-
ties of relevant systems follow power laws, so that their thermodynamic properties diverge
or vanish at the critical point. According to the above considerations, the static scaling
hypothesis takes into account the growing of characteristic length of a system near the
critical point. However, another important observation is that all transport phenomena un-
dergo aslowing down, caused by the increase of the correlation lengthξ. Consequently,
it can be assumed that, in addition to the characteristic length, there exists a character-
istic time scale. Thedynamic scalinghypothesis, which describes the phenomenon of
so-calledcritical slowing down, was first introduced by Ferrell in 1967 [32] and was
subsequently generalized for magnetic systems by Halperin and Hohenberg (1969) [33],
[34]. The hypothesis implies that, when the temperatureT of a system approaches the
critical temperatureTc, the relaxation timeτξ is governed byξṽ. Hereṽ is the exponent
of the fluctuation correlation length, Table (2.2). With the life time of fluctuations, given
by 1/τξ = Γ, and using generalized homogenous functions it is possible to to expressΓ
as a generalized homogenous function of the wave vectorq and the reciprocal correlation
length of the critical fluctuationsξ−1:

10



2.3 Critical phenomena

exponent value variable
α̃0 0.11 heat capacity CV
β 0.33 order-parameterσ
γ 1.24 osmotic susceptibilityχT

δ 0.057 combination ofα̃0/Z0× ν̃
ν̃ 0.63 correlation lengthξ
Zη 0.065 viscosityη
Z0 3.05 dynamic critical exponentΓ

Table 2.2: Various static and dynamic exponents used in this work.

Γ = f (q,ξ−1) with f (λq,λξ−1) = λz f (q,ξ−1), (2.17)

here isz the degree of homogeneity. With the assumptionλ = q−1 and the implementation
of the relationΩ(qξ) = f (1,(qξ)−1) it is possible to scale the relaxation rateΓ:

Γ = qzΩ(qξ) (2.18)

The functionΩ(qξ) is the so-calleddynamic scaling functionof the variablesq andξ.
This function plays an important role in the treatment of critical dynamic phenomena.
Within the scope of renormalization group theory of critical phenomena it is possible to
calculate specific values of the critical exponents. The results of these calculations, which
have been done by Gillou [35] for static critical exponents and Burstyn and Sengers [36]
for dynamic critical exponents, are shown in Table (2.2).

The development of dynamic scaling theories is a continuous process and undergoes per-
manent corrections and improvements1,2. In this section the essential features of dynamic
scaling hypothesis have been presented which refer to binary fluids. In the case of the
ternary fluids, dependent on the relevant type of phase diagram, the critical exponents
have to be renormalized.

1corrections of the critical viscosity has been published in [39]. The most recent value forZη is 0.0679±
0.0007

2the exponentδ is often used within the framework of Bhattacharjee-Ferrell theory for the critical ampli-
tudeSBF of sound attenuation; see Table (2.2)
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2 Thermodynamics of Critical Phenomena

2.3.4 Renormalization of critical exponents

Taking a closer look at literature of last decades which deals with the theoretical and
experimental investigations of critical behavior in three-component fluids it turns out that
the binary fluids conception has to be adjusted to apply to ternary fluids. Adjustment can
be made by renormalization of critical exponents. Bak and Goldburg 1969 [37], [38], have
performed light scattering measurements. They found larger critical exponents for the
osmotic susceptibility in the critical ternary system bromobenzene-ethanol-water. Based
on these results Fisher proposed a renormalization of critical exponents from calculations
of the free electron Ising model [9], [10]. His idea was to keep the formalism developed
for binary fluids and to consider the third component as an ”impurity” of the system. The
free energy of a binary liquid system is given byF = F0(T,h), whereh is the field that
corresponds with the other thermodynamic parameters. In the case of ternary fluids the
free energy is determined byF(T,h,h3), whereh3 is the field which is coupled to the
”impurity” with concentrationx3. A more detailed description can be found in the papers
by Müller [40], [41].

2.3.5 Critical opalescence and equal volume criterions

Critical opalescenceis a phenomenon in liquids close to their critical point. A normally
transparent liquid appears milky due to density fluctuations at all possible wavelengths.
In 1908 Smoluchowski [42] was the first one who connected density fluctuations with the
opalescence. In 1910 Einstein [43] showed the relationship between critical opalescence
and Rayleigh scattering. Since then, critical opalescence is one of the most important
indications for the existence of a critical point. However, another substantial criterion for
the existence of a critical point is the so-calledequal volume criterion. Only when the
volumes of considered components are equal when approaching the consolute point, that
point can be assumed to be a critical point. According to both criterions it is possible to
determine the critical point visually.

2.4 Phase diagrams

The correct knowledge of the phase diagrams of the critical systems under consideration
is essential for measurements at and close to the critical point.

2.4.1 Phase diagrams for binary liquids at constant pressure

It is common practice to present the coexistence curve of a binary mixture in aT-x-
diagram as is shown in Fig.(2.3), whereT denotes the temperature andx denotes the mole
fraction of one constituent. Fig.(2.3) demonstrates the common types of phase diagrams.

12



2.4 Phase diagrams

Figure 2.3: T-x-Types of binary phase diagram at constant pressure.

One can distinguish between open miscibility gaps (a,b,d) and closed miscibility gaps (c).
In the present work only phase diagrams of type (a) and (b) play a role. Phase diagrams
of type (a) withupper critical point Tu

c can be found when alcohols,n-alkanes, as well
as nitro-benzene and nitro-alkanes are involved. Phase diagrams of type (b) withlower
critical point T l

c are characteristic of aqueous mixtures.

2.4.2 Phase diagrams of ternary mixtures at constant
pressure

Ternary systems are made of three constituents. Let us denote the three constituents byA,
B, andC. The mole fractions of the constituents are related to one another:

∑xi = 1 =⇒ xA +xB +xC = 1, (2.19)

wherexi denotes the mole fraction of the constituentsA, B or C. The diagrams, as pre-
sented in Fig.(2.4) are three-dimensional but for ease of drawing and interpretation it is
convenient to handle them by considering the isotherm in two dimensions. Along the

13



2 Thermodynamics of Critical Phenomena

Figure 2.4: Ternary phase diagram at constant pressure.

line connecting two constituents the mole fraction of the third one must be zero. At any
vortex, the mole fraction of one constituent is 1.0 while that of both others zero. An exam-
ple of such isothermal diagram is shown in Fig(2.5). Obviously, the thermodynamics of
ternary mixtures is more complicated as that of binary mixtures. The stability criterions
discussed in Section (2.1) have to be extended to include the third component. Details of
calculations and the underlying theory are given in the paper by Sadus [44]. Here only
a brief outline about the conditions and criterions of the existence of a critical point in a
ternary liquid system is presented. The third constituent makes it necessary to extend the
before mentioned criterion of stability by an additional quantity, the diffusion coefficient
D0:
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2.4 Phase diagrams

Figure 2.5: Example of an isotherm for a phase diagram of a ternary mixture: The
mixing point, represented by the dot, is composed of the componentsA with xA = 0.4, B with
xB = 0.35 andC with xC = 0.25., ∑xi = 1.
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while F = U −TSand the condition for the third constituent follows from Eq.(2.19) and
is xC = 1−xA−xB. However, due to the reduction of the stability area and the equilibrium
area to only one line, the following relation has to be fulfilled at the critical point:
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(2.21)

With the aid of Eq.(2.21) and taking the free energyF(xA,xB,T) as well as the so-called
Porter-attempt [40] into account, it is possible to assess the shape and the position of
the critical line. A considerable diversity of critical equilibria can potentially be ob-
served in a ternary mixture. Fig.(2.6) shows the existing types of phase diagrams, based
on phenomenological interpretation of models of critical systems. In this thesis type 2a
diagrams are important and are thus considered in more detail. Diagrams of type 2a re-
sult from mixing of two binary upper-critical-point mixtures with a common component.
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2 Thermodynamics of Critical Phenomena

Figure 2.6: Phase diagrams for ternary liquids at constant pressure.The dashed lines
show equilibrium tie lines and the full lines binodales.

Figure 2.7: An hypothetical phase diagram of Type 2a of the ternary systemABC:a)
Points (•) refer to the line of plait points. Different isothermal binodal curves are represented
at temperaturesT1, ...,T2. b) The plait point line as a function mole fraction ofA, from the
binary systemCB to AB.
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2.4 Phase diagrams

The mixing behavior of ternary systems of type 2a is illustrated in Fig.(2.7). This kind
of particular class of ternary liquid systems has been first found by Francis [45] in 1953.
However, at constant pressure one can follow the line of so-calledplait points between
the demixing points of two limiting binary liquid systems. In the the case of Fig.(2.7(a))
it is the binary systemCBand the binary systemAB. Each of these plait points represents
the critical consolute point of a critical composition of the ternary systemA, B andC.
At these points criterions for critical behavior like the equal-volume criterion or critical
opalescence are fulfilled. In certain temperature ranges, the hypothetical systems under
consideration, have two separate binodal lines. On lowering the temperature the two lines
coincide at both plait points. Consequently, a new significant point appears, the so-called
col point or saddle point. This behavior emerges when two conditions are satisfied. First,
in the range of temperatures considered two components are miscible and the third one
is partially miscible with both others up to the respective binary critical solution temper-
atures, as shown in Fig.(2.7(b)). Second, the critical consolute point must be quite close
the critical point of the other binary system. In conclusion, in the triangular tempera-
ture/composition prism of the ternary system, the binodal surface is concave upwards and
shows the existence of a saddle point (col point) as an extremum (in this case minimum).
This happens at temperatures lower then the critical temperatures of considered binary
systems, as has been indicated in Fig.(2.7(b)). Saddle points, also named col points as
plait points in general fulfil critical point criteria.
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3 Experimental Methods

The aim of this chapter is to describe the general principles of experimental methods,
which have been used in this work. The chapter is divided into four major sections. The
first section (3.1) describes the general aspects of experimental set-ups, to optimize
the accuracy of measurements. The second Section (3.2) deals with the dynamic light
scattering (DLS) theory and experimental set-up while the third Section (3.3), focused
on the broadband ultrasonic (US) theory and experimental setup. A fourth Section
(3.4) presents the complementary measurement methods, like shear viscosity, density and
calorimetry, which have been used to determine useful thermodynamic parameters.

3.1 General aspects

All technical equipment has been operated in temperature controlled±1 K laboratories.
The specimen cells were provided with channels for circulating thermostat fluid and ad-
ditionally placed in thermostatic boxes. This kind of thermostatic shielding allows to
control the temperature of the measurement cells to within 0.02 K. The temperature was
measured with an error less then 0.01 K using Pt 100 thermometers. In order to avoid
mechanical stress during the measurements, the DLS and US cells have been placed on
massive granite tables. Both species of cells, the light scattering cells (sample volume
2 ml) as well as ultrasonic cells (samples volume between 2 ml and 200 ml) have been
subjected to extremely accurate cleaning procedure before use. The light scattering cells
have been treated in an ultrasonic bath cleaner, filled with isopropanol, for several hours
before starting a series of measurements. Finally, the cells have been dried in a vacuum
oven. In the case of ultrasonic cells the cleaning and preparation procedure is somewhat
different. The cells have been first flooded continuously with distilled water for several
hours. Afterwards remaining water in the cells has been dissolved by methanol and the
cell has been dried with the aid of nitrogen gas for about 30 minutes. The filling pro-
cedure of the ultrasonic cells has to be likewise done with care. To avoid air bubbles in
the cell the substances have to be filled continuously and slowly from the bottom. The
aim is to get the best contact between transducer surface and the investigated substance
as well as to avoid air bubbles. Consequently, the speed of cell filling is crucial for the
proper operation of the transducers. All measurements have been performed at standard
pressure.
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3.2 Dynamic light scattering

In the last decades, light scattering techniques have been used with increasing effort for
investigations of the physical properties of pure fluids and multicomponent fluids. The
dynamic light scattering is a very powerful technique to determine the size of particles or
to study critical fluctuations in multi-component fluids. According to the semi-classical
theory, when light interacts with matter, the electric field of the light induces an oscillating
electronic polarization in the molecules or atoms. With the aid of electromagnetic theory,
statistical mechanics and hydrodynamics it is possible to gain information about the struc-
tural and dynamic properties of a sample. In the present work the interest is focused on
the critical fluctuations.

3.2.1 Electromagnetic scattering theory

In the following, the underlying theory of dynamic light scattering on fluids is briefly
summarized. For a more detailed description the reader is referred to specialized litera-
ture [46], [47], [48].

A typical scattering geometry for light scattering experiments is shown in Fig.(3.1). In
principle, it is possible to vary the polarization of the incident light. However, with the
help of scattering vector~q follows from geometrical considerations, Fig.(3.1), the re-
lationship between the wave vector~ki that points in the direction of the incident plane
wave, and~kf which points in the direction of the outgoing waves1.Thescattering vector
is defined as~q =~ki−~kf . The amount of~q is given by:

q' 2ki sin(Θ/2) =
4πnid

λ0
sin(Θ/2), (3.1)

with the refractive indexnid of the fluid, the laser wavelengthλ0 in vacuo, and the scatter-
ing angleΘ. For a general description of interactions between a light beam and molecules,
it is appropriate to study the induced dipole moment of one molecule in an electrical field.
The relation between the dipole moment~p of a molecule and the field~E at the position~r
at timet is given by:

~p(~r, t) = α
L
·~E0(~r, t), (3.2)

whereα
L

denotes the polarizability tensor. In light scattering experiments the incident
electromagnetic wave may be written as:

~E0(~r, t) = ~niE0 ·ei(~ki ·~r−ω0t), (3.3)

1index i stands for incident plane wave and indexf stands for the outgoing waves (towards the detector)
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3.2 Dynamic light scattering

Figure 3.1: Typical scattering geometry.

with the circular frequencyω0 and the normal vector~ni . The field of the electromag-
netic wave induces an oscillating electronic polarization. Hence, the molecules behave
as Hertzian dipoles and provide a secondary light source. From theMaxwell-equations
follows the light wave propagation in a detector direction~kf :

~Edipole(~R, t) =
E0

4πε0
· 1

| ~R |
·ei(~kf ·~R−ω0t)[~kf × [α ·~̂ni×~kf ]], (3.4)

with the electric field constantε0, and with~R being the position of the detector. The
Eq.(3.4) describes the electric field propagating from an elementary dipole originating
from a molecule. The electrical field from all molecules in the scattering volume follows
as:

E(~R, t) =
N

∑
j=1

E j(~R, t) = CeikiR−ωit) ·
∫

d~rn

(
~r, t− |

~R−~r |
v

)
·ei(~ki−ki ~̂R)~r , (3.5)

with the constantC = (παE0/ε0λ2) · 1
R and~̂R= ~R

|~R| . In principle, relation (3.5) describes

the scattered light completely. In practice, however, the light intensity is obtained from
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the detectors. The intensity is defined as the ensemble mean:

I(~R,ω) = lim
T→∞

1
T

〈∣∣∣∣∫ T/2

−T/2
dtE(~R, t)eiωt

∣∣∣∣2
〉

. (3.6)

Insertion of the Eq.(3.5) yields [49]:

I ′(~q,ω) = | C |2
∫ ∞

−∞
dt

∫
d~re−i(~q~r−(ω−ω0)t)〈δn(~r, t)δn(~0,0)〉 (3.7)

= | C |2 S′(~q,ω−ω0). (3.8)

In Equation (3.7) δn denotes the deviation of the local particle density from the average
value (δn := n(~r, t)−〈n〉). I ′ andS′ refer to the scattering volume whereS′(~q,ω−ω0)
is the so-called dynamic structure factor. In other words,S′ is the space and time Fourier
transformed autocorrelation function ofδn. With regard to the next section it is useful to
relate Eq.(3.7) to the static scattering intensity ofI(~q) and the static structure factorS(~q):

I(~q) =
∫ ∞

−∞

dω
2π

I ′(~q,ω) =| C |2
∫ ∞

−∞

dω
2π

S′(~q,ω−ω0) =| C |2 S(~q). (3.9)

In conclusion, an important expression for the hydrodynamic considerations results:

I ′(~q,ω)
I(~q)

=
S′(~q,ω−ω0)

S(~q)
. (3.10)

3.2.2 Spectrum of scattered field - hydrodynamic
considerations

For the interpretation of the scattered spectrum of a fluid it is useful to consider the scat-
tered field in terms of hydrodynamic approaches. In order to get access to hydrodynamics,
the conservation and continuity equations have to be applied to a fluid volume element:

∂
∂t

n(~r, t)+m−1∇~g(~r, t) = 0 (3.11)

∂
∂t

~g(~r, t)+∇~T(~r, t) = 0

∂
∂t

e(~r, t)+∇~je(~r, t) = 0,
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3.2 Dynamic light scattering

with the particle number densityn(~r, t), the vector of momentum density~g(~r, t), the m
mass, as well as the energy densitye(~r, t). ~T(~r, t) is the stress tensor and~je(~r, t) the en-
ergy flux density. In the case of fluids with negligibly small viscosityηs = 0, follows
T0

i j = δi j p(~r, t) and~j0e(~r, t) = (e+ p)(~r, t); wherep(~r, t) denotes the pressure and~v(~r, t) is
the average velocity of a particle. In general one gets an additive term, following from the
heat conductivityΛ of a liquid, for the energy flux−Λ∇~T(~r, t). Finally, the expression of
energy flux density is given by2:

~j0e(~r, t) = (e+ p)(~r, t)−Λ∇~T(~r, t). (3.12)

However, in the general case when the viscosity of fluid is not neglected, the expression
of momentum density has to be completed to account for the volume viscosityηV and the
shear viscosityηs. Consequently:

Ti j (~r, t) = δi j p(~r, t)−ηs

{
∂vi(~r, t)

∂r j
+

∂v j(~r, t)
∂r i

}
−δi j ∇~v(~r, t)

(
ηV −

2
3

ηs

)
(3.13)

follows. In conclusion, with the aid of the equations of conservation and continuity (3.11),
(3.12) and (3.13), a complete mathematical mean-field description of the hydrodynamics
of a liquid results. The evaluation of the relations necessitates a linearization of the cou-
pled differential equations (3.11). Furthermore, it is usefully to express the energy density
e(~r, t) by a time dependent heat density:

q(~r, t) = e(~r, t)−
(
〈e〉−〈p〉
〈n〉

)
n(~r, t). (3.14)

More details can be found in [46]. The above relations include the complete information
about the scattering spectrum of a simple liquid, which can be written as:

S′(~q,ω)
S(~q)

=
(

1−CV

Cp

)
· 2DTq2

ω2 +(DTq2)2 + (3.15)

+
CV

Cp
·

1
2DSq2

(ω−csq)2 +(1
2DSq2)2

+

+
CV

Cp
·

1
2DSq2

(ω+csq)2 +(1
2DSq2)2

,

with the heat capacitiesCV ,Cp and thermal diffusivity coefficientsDT andDS= DT( Cp
CV−1−

2underlined quantities denote additional terms
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1) + Dl , whereDl is the sound attenuation constant,|~q| = q and the sound velocity
cs = 1

m(∂p/∂n)S (m denotes mass). Eq.(3.15) is a heuristic formula for the spectrum
of light scattered by simple fluid and can be considered as a relation between Eq.(3.10),
with the static and dynamic structure factor and the thermodynamic parameters of a fluid.
The shape of the spectrum is shown in Fig.(3.16). The frequency dependence in Eq.(3.15)
is that of a Lorentz function:

f (ω) =
2ΓR

(ω−ω′)2 +Γ2
R

. (3.16)

Another important expression for the evaluation of DLS data is given by theEinstein-

Figure 3.2: Spectrum of Scattered Light: Spectrum for the light scattered by thermal fluc-
tuations in liquids according to Eq.(3.15).

Stokesrelation [50], [51], which relates the diffusion coefficientD, the shear viscosityηs

and to the radiusr of a particle:

D =
kBT

6πηsr
. (3.17)

Eq.(3.17) holds for simple fluids. In the case of multi-component critical systems the
diffusion has to be considered within the framework of the mode-coupling theory. Mode-
coupling theory yields a similar expression for the critical part of mutual diffusion coeffi-
cient:
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3.2 Dynamic light scattering

D' kBT
6πηsξ

, (3.18)

with the correlation lengthξ. More detailed descriptions of themutual diffusion coeffi-
cient and its corrections within the scope of dynamic scaling and crossover theory will be
presented in Chapter (4).

3.2.3 Data evaluation of dynamic light scattering

The central quantity of the evaluation of correlation spectroscopy is the decay time also
named thecorrelation-time τc. Unfortunately, it is not possible to detect this frequency
with classical optical methods. As a consequence, it is substantial to use optical mixing
techniques, like homogenous mixing, heterogenous mixing (homodyne and heterodyne
techniques) andthe self-beating method. The last one, has been used in present thesis
and will be described below.

3.2.4 Self-beating spectroscopy

The principle of self-beating spectroscopy is based on mixing of scattered light with the
original light on analyzing the resulting signal with low-frequency intermediate signal.
This is realized in three steps.

• Consider a signal of field strength~E(~R,ω) with spectrumAi , that has to be shifted
into the lower frequencies. This happens with the aid of a local-oscillator signal.
After this mixing procedure, it is possible to describe the scattered light with the
help of convolution integral of the incoming spectrum (Ap, spectrum of the photon
flux):

Ap(ω) ∝
∫ ∞

−∞
Ai(ω′)Ai(ω−ω′)dω′. (3.19)

On the one side, the photon fluxi(t) is proportional to the light intensity,|I(ω)| =
|~E(ω)|2. On the other side, according to Eq.(3.16), the considered Rayleigh line
is of the shape of a Lorentz curve, with the the half-bandwidthΓR and the center
frequencyω0:

Ai ∝
ΓR

(ω−ω0)2 +(ΓR)2 . (3.20)

Hence, resulting from the convolution integral Eq.(3.19) the spectrumAp of the
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photon fluxi(t), can be expressed by:

Ap ∝
2ΓR

ω2 +(2ΓR)2 . (3.21)

For simple fluids the half-bandwidthΓR (see Fig.(3.16)) of the Lorenz-curve can be
represented by:

ΓR =
Λ

ρCp
·q = DT ·q, (3.22)

here denotesDT the thermal diffusivity,Λ the thermal conductivity,ρ the density,
Cp, the heat capacity at constant pressurep as well asq, the amount of the scattering
vector. The next step is to find a tool to measure the spectrum. This can be realized
with the aid ofCorrelation Spectroscopy.

• Correlation Spectroscopy: TheWiener-Khinchin theorem|Af (ω)|2 = F −1Φ[ f (t)]
relates the signalf (t) with the amount of the spectrumAf (ω). Here isF −1 the in-
verse Fourier transform andΦ[ f (t)] is the autocorrelation function off (t). As
mentioned before, the signali(t) of the photon flux is proportional to the light in-
tensityI(t). Practically, in an experiment the autocorrelation functionΦ[i], which is
proportional to the autocorrelation function ofΦ[I ], is determined. Consequently,
the following expression results:

Φ[i] ∝ Φ[I ] ∝
∫ ∞
−∞ I(t)I(t + τc)dt∫ ∞
−∞ I(t)2dt

≡ g(2)(τc). (3.23)

In an experiment the interest is not focused on the intensity spectrum of the but in
the spectrum of electric filedE(t). Due to the well known relationI(t) = |E(t)|2,
the expression (3.23) for the electric field is given by:

g(1) ≡Φ(~E) =
∫ ∞
−∞

~E∗(τc− t)~E(t)dt∫ ∞
−∞ |~E(t)|2dt

. (3.24)

Finally, the autocorrelation functiong(2) of the intensityI(t) and the autocorrelation
functiong(1) of the fieldE(t) are related by the so-calledSiegert relation:

g(2)(τc) = 1+ |g(1)(τc)|2. (3.25)

In the DLS experiment one has to do with the Lorentz profile, as is according to
Eq.(3.21). The autocorrelation function of this profile is given by:

Φ[i] ∝ e−2ΓR|t| = e−|t|/τc. (3.26)
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3.2 Dynamic light scattering

Equation (3.26) allows to determine the half-withΓR of Rayleigh-line from the
correlation-time 1/2ΓR of the photon autocorrelation function.

• Photon statistics: All considerations have been done with the assumption thati(t) ∝
I(t). In principle, this can be done for sufficiently high scattering count rates. For
experiments with lower rates it is substantial to use adequate statistics. This is
described in detail in [46].

3.2.5 Technical equipment

A typical dynamic light scattering set-up is presented in Fig.(3.3). A frequency-doubled
Nd:YAG laser (1) is used as light source. The laser light passes several diaphragms (2),
a polarizer (4) and a collimator lens (5) with focal lengthf = 100 mm and is then fed
to the sample cell (6). The scattered light passes a microscope objective (7), a polariza-
tion analyzer (9) and the slit (10) with (d = 200µm). Finally, the signal is detected by a
photomultiplier (Hamamatsu Electronic, Model R647P) (12) that transforms a variation
of intensity into a variation of voltage. The spectrometer is provided with a goniometer
system which allow superior of scattering angleΘ. The received signal is analyzed with
help of a correlation card ALV-5000/E with logarithmic timescale and with 288 channels.
In principle it is possible to analyze the autocorrelation function in terms of a superposi-
tion of up to four exponentials and thus four correlation timesτc. Hence the Rayleigh line
may be considered a sum of up to four Lorentz functions. Combining the correlation time
τc with the Eqs.(3.1), (3.22) and (3.17) or (3.18), it is possible to determine the radiusr
of a particle and thus the correlation lengthξ.

27



3 Experimental Methods

Figure 3.3: Construction of the DLS set-up: (1) frequency-doubled Nd:YAG laser ; (2)
diaphragms; (3) mirror; (4) polarizer; (5) collimator lens; (6) sample cell; (7) microscope ob-
jective; (8) diaphragms; (9) analyzer; (10) slit; (11) photomultiplier (Hamamatsu Electronic,
Model R647P) ; (12) thermostat channels ; (13) electronic equipment (correlation card ALV-
5000/E and personal computer).

3.3 Ultrasonic techniques

This section describes some basic principles of ultrasonic spectroscopy. Ultrasonic spec-
troscopy is used to study fast elementary molecular processes in liquids. It is possible to
study phenomena like stoichiometrically well defined chemical equilibria, including pro-
tolysis and hydrolysis reactions, conformational changes, association mechanisms and
critical fluctuations. Oscillating compressions and decompressions in an ultrasonic wave
cause oscillations of molecular arrangements in the liquid. An advantage of this technique
is that the amplitudes of deformations in the ultrasonic waves are extremely small. It is
a non-destructive technique. The available frequency range from 80 kHz to 5 GHz ne-
cessitates the use of different techniques:resonator methodsandvariable path length
methods. However, this need provides another advantage of this methods. Because of
different instrumental set-ups, systematic errors are unlikely to remain unnoticed.
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3.3 Ultrasonic techniques

3.3.1 Classical absorption and background contribution

Sound fields constitute temporal and spatial oscillations of the local pressure, which prop-
agate through the liquid medium adiabatically, with its amplitude decreasing exponen-
tially along the direction of propagationz by:

p(z, f , t) = p0 ·e−αz ·e−i·2π( f t−z/λ), (3.27)

whereα is the attenuation coefficient,cs is the sound velocity in the liquid for compres-
sional waves of frequencyf , cs = λ · f , p is the sinusoidally oscillating sound pressure,
p0 = p(z= 0) andi2 = −1. The attenuation coefficientα is usually considered in ultra-
sonic spectroscopy. For our understanding of acoustical spectra, it is necessary to identify
the physical mechanisms leading to sound attenuation in liquid systems. Oscillations of
the liquid are coupled to the shear viscosity and other transport properties, which thus play
an important role in compressional wave interactions. If the particle velocity is smaller
than the sound velocity, the field in a viscous liquid is determined by the Navier-Stokes
equations resulting in an acoustic absorption coefficient. An expression, which describes
viscosity losses, is [52]:

αvis( f ) =
2π2

3c3
sρ

(4ηs+3ηV) · f 2 (3.28)

with:

ηs : shear viscosity
ηV : volume viscosity

f : frequency withf = ω/2π
ρ : density
cs : sound velocity

The relation (3.28) is strongly dependent upon the properties of the medium and on the
frequency. Here the properties of a medium are mainly defined by theshear and the vol-
ume viscosity. Shear viscosity has the origin in Stokes friction. Additional losses result
from the thermal conductivity, which has been fist shown in 1868 by Kirchhoff [53]:

αthermal( f ) =
2π2

c3
sρ

(
Cp

CV
−1

)
X
Cp

f 2 (3.29)

with:
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Cp : specific heat capacity,p = const.
CV : specific heat capacity,V = const.
X : coefficient of heat conductivity.

From history, it is a common practice to call the sumαvisc+αthermal as the ”classic” part
of the acoustic attenuation coefficientαclass. In aqueous solutions theαthermal contribu-
tion part toαclass is usually small(αthermal� αvis) and can be neglected. In principle the
the shear viscosityηs and the volume viscosityηV in Eq.(3.28) are frequency dependent
quantities. Therefore:

αvis( f ) =
2π2

3c3
sρ

(4ηs( f )+3ηV( f )) · f 2. (3.30)

However, it is convenient for the discussion of measured acoustical spectra to assume
the frequency-independent asymptotic ”background contribution”B′, characterizing the
total absorption at frequencies far above the experimental range. This includes the relaxa-
tion processes, occurring at frequencies well above the measuring range. Subtracting the
asymptotic value from the measured absorption gives the so-calledexcess contribution
(α/ f 2)exc and the excess absorption per wavelength(αλ)exc:

(αλ)exc= (αλ)− B︸︷︷︸
B′cs

f (3.31)

3.3.1.1 Noncritical ultrasonic excess absorption

Fast elementary molecular reactions, that are usually exhibited by ultrasonic excess ab-
sorption spectra, with the inverse relaxation time in the frequency range of measurement,
are conformational changes, protolysis and hydrolysis, as well as dimerization and com-
plexation mechanisms. Chemical equilibria are associated withDebye-type relaxation
terms, exhibiting discrete relaxation timesτ. According to [55], the excess absorption for
one relaxation process can thus be described by:

RD( f ) = (αλ)D
exc = A· ωτ

1+(ωτ)2 , (3.32)

with ω = 2π f , andA being the relaxation amplitude. LetX andY represent different
conformers of the same species in a dynamical equilibrium. The unimolecular reaction
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scheme is then simply given by:

kf

X � Y.
kr

(3.33)

Herekf denotes the forward rate constant andkr represents the reverse rate constant. Both
constant are related to the equilibrium constantK = kf /kr and to the relaxation time of
Eq.(3.32) by:

τ−1 = kf +kr . (3.34)

In order to discuss some general characteristics of ultrasonic relaxation, an energy scheme
is sketched in Fig.(3.4), where a (hypothetical) potential is given as a function of the
molecular volume of the species undergoing a boat/chair conformation equilibrium like
that of cyclohexane.

Figure 3.4: Qualitative energy
profile of a chemical relaxation
process it the case of cyclohexane
(based on a Figure in [54])

In Fig.(3.4) it has been assumed that the
speciesX and the speciesY differ from one
another by the molar reaction volume

∆V = VY−VX (3.35)

and by the reaction enthalpy∆H. In princi-
ple, the idea of getting information aboutαexc

is simple. In a sound field, the energy pro-
file oscillates around the equilibrium curve,
as indicated by the dashed and dotted curves
in Fig.(3.4). The autocorrelation function for
thermal fluctuations of the population num-
bersNY(t) andNX(t) of speciesY andX, re-
spectively, in a given volume element and thus the autocorrelation function of the thermal
fluctuations in the densityρ of the sample is characterized by an exponential decay:

Φρ(t) = 〈ρ(t) ·ρ(0)〉= Φρe(−t/τ) (3.36)

with the autocorrelation timeτ. The liquid system tends to follow the oscillations in the
potential curve. The transition from one conformation to another is controlled by the acti-
vation enthalpy barrier∆H > RT, establishing a finite probability for that conformational
change. In accordance with the Le Chatelier principle it follows the reaction, in Eq.(3.33).
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A time lag between pressure and density in the sound field leads to a dissipation of acous-
tic energy with an attenuation coefficientα in Eq.(3.27). At f � (2πτ)−1 the system has
sufficient time to reach the equilibrium without significant decay. At high frequencies
f � (2πτ)−1, the system can not follow the rapid pressure variations. In the frequency
range f ' (2πτ)−1, sound energy dissipation per cycle has a maximum, leading to the
characteristic profile of Debye term. The unique Debye term fits spectra pretty good in
case of well defined molecular processes. Sometimes it is not possible to describe an
excess absorbtion spectrum by one Debye term of the form Eq.(3.32). Especially, when
different molecular processes exist in the frequency range of measurement it is mostly
necessary and possible to apply a sum of Debye terms:

RDi( f ) = (αλ)Di
exc =

N

∑
i=1

Ai ·
ωτi

1+(ωτi)2 . (3.37)

Unfortunately, sometimes molecular processes lead to very complicated spectra. Con-

Figure 3.5: An example of the Hill function with different values of m, n and s, according
to Eq.(3.38).

sequently, they can only be regarded as a sum of Debye-terms with a particular distribu-
tion of amplitudes. Menzel at al. [58] found the relaxation spectral function, originally
introduced by Hill [56], [57] discussing non-exponential decay in the polarization of di-
electrics, to be favorably utilized in physical acoustics. The Hill function is given by (see

32



3.3 Ultrasonic techniques

Fig.(3.5)):

RH( f ) = (αλ)H
exc = A

(ωτ)m

(1+(ωτ)2s)
m+n
2s

, with m,n,s ∈ [0,1], (3.38)

whereA denotes an amplitude. Eq.(3.38) reflects an underlying continuous relaxation
time distribution with a characteristic relaxation timeτ and with parameterm,n and s
,(0 ≤ m,n,s≤ 1), that determine the width and the shape of distribution function. If
m= n = s= 1 then the Hill spectral function corresponds with a Debye term, Eq.(3.32),
bold plot in Fig.(3.5). With a reduced number of adjustable parameters therestricted Hill
function:

R#
H( f ) = (αλ)H#

exc = A
(ωτ)m

(1+(ωτ)2s)
3
4s

. (3.39)

is then appropriate. A characteristic example for a restricted Hill function will be shown
later in Chapter (5) when the critical system isobutoxyethanol-water [77] is discussed.

3.3.1.2 Critical systems and total attenuation spectrum

In the case of critical liquid systems, the ultrasonic spectra get an additional contribution,
resulting from the critical fluctuations. This critical attenuation term has been treated
within the framework of the Bhattacharjee-Ferrell theory. Assuming additivity of the
critical contributions and the other ones, the total ultrasonic absorption spectrum, can be
written as:

(αλ) = (αλ)c +(αλ)exc︸ ︷︷ ︸
(αλ)∗exc

+(αλ)bg. (3.40)

However, because of its essential role in these investigations, the first contribution to
Eq.(3.40) will be treated separately in the Chapter (4).

3.3.2 Ultrasonic instruments

Next sections deal with the realization of different ultrasonic methods. The ultrasonic cell
consists of two piezoelectric transducers arranged parallel to each other. One of these
disc-shaped transducers acts as the transmitter, the other one as receiver. The surfaces
of the used transducers are coaxially plated with electrodes (chrom/gold). The sound
wave is induced by the inverse piezoelectric effect. In principle two kinds of ultrasonics
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Figure 3.6: Review of broadband ultrasonic methods.

techniques were used in present work; theresonator method Section (3.3.3) and the
pulse transmission methodSection (3.3.4). The principle of the resonator method is
based on folding the acoustic path via multiple reflections in order to obtain a resolvable
amplitude decay at lower frequencies. With the help of pulse methods it is possible to
make measurements of the exponential amplitude decay versus distance of propagating
waves, which propagate through the liquid. Standing and the traveling wave methods
overlap in a wide range and can be used to check the consistency of measured ultrasonic
spectra.

3.3.3 Resonator cells 80 kHz - 20 MHz

The ideal resonator

In order to understand the functioning of a real resonator, it is appropriate to take a look
at the ideal resonator. In this work cylindrically shaped ultrasonic resonator cavities are
operated in compressional modes. For the consideration of an ideal resonator some as-
sumption have to be made:
First, the ideal resonator consists of two piezoelectric planar transducers, separated by
the distancel and with radiusR. The wavelength of the sound waves isλ� R. As a
consequence, plane waves are considered. Second, energy dissipation occurs only in the
fluid. Because of these assumptions it is possible to express the sound pressure at the
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Figure 3.7: Basic principle of an ultrasonic cell.

receiver3as a mathematical series:

pR = p0(1+ rR)e−γl ·
∞

∑
n=0

(
rRrTe−2γl

)n
. (3.41)

This series convergences forrR · rT < 1. With pT(0, t) = p0 ·eiωt this yields:

pR = p0

(
(1+ rR)

eγ·l − rRrTe−γ·l

)
eiωt . (3.42)

Finally, the transfer functionT( f ) results as proportionality:

T( f ) =
UR

UT
∼ pR

pT
=

1+ rR

eγ·l − rRrTe−γ·l . (3.43)

Its absolute value is:

| T( f ) | ∼ (1+ rR)√
(eαl − rRrTe−αl )2 +4rRrTsin2(kl)

, (3.44)

with:

3indexRdenotes the receiver and indexT the transducer
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T( f ) : complex transfer function of the system ;
UT , UR : transducer and receiver voltage, respectively ;

rT , rR : reflection factor at the transducer or receiver, respectively ;
α : attenuation exponent of liquid ;

γ = α+ ik : complex propagation constant ;
k = 2π f/cs : wave number ;

cs : sound velocity;
l : distance between piezo-transducers;

p0 : the amplitude of sound pressure.

The transfer function for an ideal resonator with reflection coefficients at the liquid trans-
ducer interfacesrR = rT = 1:

T( f ) ∝
1

eγl −e−γl =
1

2sinh(γl)
. (3.45)

With the relation sinh2(γl) = sinh2(αl)+sin2(kl), the amount ofT( f ) is given by:

|T( f )| ∝ 1√
sinh2(αl)+sin2(kl)

. (3.46)

Consequently, for the ideal resonator equidistancy of resonance frequencies follows:

fn = n· cs

2l
. (3.47)

With the aid of Eq.(3.47) the sound velocity ofcs can be determined. For smaller losses,
(α � 1) Eq.(3.46) can be calculated with the use of Taylor series, at the resonances
fn. For f = fn + δ f , the following approximations can be made: sin(αl) ≈ αl and
sin(kfn+δ f l) = sin(2π( fnδ f )

cs
l) ≈ 2πδ f

cs
l . Hence, the decrease in the power to onehalf of

the original value leads to the relation:

|T( fn +δ fh)|
T( fn)

=
1√
2

=

√
(αl)2√

(αl)2 +
(

2πδ fh
cs

l
) (3.48)

for the sound pressure. Consequently, the relation between the attenuation coefficientα
and the half-power bandwidth∆ f = 2δ fh follows as:

α =
π
cs
⇔ αλ = π

∆ f
fn

. (3.49)
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The real resonator

• Quality factor the real resonator
In a real resonator, however, acoustic energy is not only dissipated by the liquid
sample but also by imperfections of the cell. Among the various mechanisms is
energy dissipation caused by diffraction of the sound wave due to the finite cell di-
ameter. Furthermore, the radiative energy losses at the back face of the quartz, have
also to be taken into account. The quality factorQ of a resonator is defined, by the
ratio of reversibly stored energyEr and the dissipative energyEd: Q≡ 2πEr/Ed.
In summary, there are two contributions to the energy dissipation of a sound beam:
attenuation caused by the liquid and that from the instruments. The total measured
reciprocal quality factor can be written as:

Q−1
tot = Q−1

instrum. +Q−1
liquid. (3.50)

Because the quality factorQ is connected with the half-power bandwidth∆ f via:
Q = fn/∆ f and because of Eq.(3.50) the total attenuation per wavelength, can be
expressed by:

(αλ)tot = (αλ)instrum. +(αλ)liquid. (3.51)

Labhardt et al. [61], [62] have found a relation for losses of plane transducer res-
onators:

π
∆ f
δ

= (αλ)tot = (αλ)liquid +
0.147

βb

(cs

R

)3
· 1

f 3 +Vr , (3.52)

whereβb = ZL/ZT , with the specific impedances of liquidZL and transducerZT .
The second term on the right-hand side of Eq.(3.52) describes losses caused by
diffraction of the sound beam, whileVr additional losses. However, it is not pos-
sible to analytically separate all instrumental loss contributions during measure-
ments. Owing to this, it is necessary to perform a reference measurement, with a
carefully chosen reference liquid with matched sound velocity and density, and to
use Eq.(3.50) to calculateQliquid.

• Transducer properties:
The resonances of the transducer can be expressed by the sound velocity of the
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transducercQ and its thicknessd:

fQ =
cQ

2d
. (3.53)

There is a finite liquid-to-transducer acoustical impedance ratio so that the sound
can penetrate into the transducer. Caused by this effect, the cell-length ”seems” to
be larger than the geometrical length. This effect becomes more important near the
fundamental transducer frequency and its overtones. The cavity resonances are no
longer equidistant. This behavior has been calculated by Labhardt, too:

fn− fn−1 =
cs

2πl
arccos

(
(g2

n−1)(1−g2
n−1)−4gngn−1

(g2
n +1)(g2

n−1 +1)

)
, n∈ IN(3.54)

with g =
ρliquidcs

ρQcQ tan(π fn
fQ

)
, (3.55)

with:

fn : fundamental frequency of the cell;
l : cell length;

cs : sound velocity of liquid;
ρliquid : density of liquid;

fQ : fundamental frequency of the piezo-transducer;
cQ : sound velocity of the piezo-transducer;
ρQ : density of the piezo-transducer.

In order to consider the influence of transducer resonance on the resonator transfer
function, a piezo-transducer transfer functionE( f ) has to be taken into account.
Eggers and al. [60] have proposed the function:

E( f ) = E0

[
1− iL cot

(
π f

2 fTm

)]−2

. (3.56)

Here L is a factor, depending on the acoustic load andfTm = fQ ·m with m =
1,2, ...,n.

• Higher order modes:
At increasing frequencyf and increasing attenuation coefficientα of the sample
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liquid, the resonances belonging to a principal mode of vibration of the cavity, will
be more and more distorted and disturbed by undesired satellite peaks. The follow-
ing equation expresses this behavior for the so-calledbiplanar-resonator:

f m
n − fn =

( cs

4R

)2
(

m(2m−1)−1
fn

)
, (3.57)

where fn denotes the frequency of then-th principal mode,R is the cell radius and
m is the number of the higher order satellite modes belonging ton mode (m= 1:
principle mode). The distance between the resonance peak of a principle mode and
a satellite peak depends on the geometry of the transducer. For theplano-concave
resonator, with focussing effect of concavely shaped face of the circular cylindri-
cal cavity resonator, follows:

f m
n − fn = m

c
πl

arccos
(√

1− l/k
)

, (3.58)

with k = radius of curvature of the concave face. Plano-concave resonator have
been also used in this work(k = 2m). A favorable feature of such devices is the
reduction of disturbances from mechanical stress during temperature variation, due
to the focussing effect.
Other errors typical for measurements are caused by temperature fluctuations (change
of cs), by changes in the geometrical dimensions of cell (due to cleaning, emptying
or refilling procedures), errors of electronic equipment, especially of the impedance
analyzer used for the transducer function measurements, and systematic errors due
to insufficient parallel adjustment of the transducer crystals. In Table (3.1) one can
find the instrumental data for relevant resonators of the present work and also some
experimental errors.

• Cell design of a resonator:
The cross section of an ultrasonic resonator cell is shown in Fig.(3.13) on the last
but one side of this Chapter. The description can be found in the figure caption.

• Electronic equipment:

Fig.(3.8) shows a block circuit for broad-band resonator measurements. With the
aid of a commercial network analyzer it is possible to measure the transfer function
with high accuracy. In addition, a RF pre-amplifier, matching the high-impedance
transducer output to the NWA input has been used. Furthermore, applying a com-
puter for control of the network analyzer (NWA) and the amplifier and for the data
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geometry ft Rt R l fc V Rc range error
[MHz] [mm] [mm] [mm] [kHz] [cm3] [m] [MHz] ∆α/α

plane-concave 1 40 35 19 40 75 2.0 0.1 – 2.7 5 - 10%

bi-concave 7 10 8.4 5 125 1.3 3 0.4 – 13 5 - 10%

Table 3.1: Resonator dates: ft : fundamental frequency of the piezo-transducer ;Rt : trans-
ducer radius;R : cell radius;l : cell length; fc : fundamental frequency of the cell;V : liquid
volume andRc : radius of curvature of transducer.

Figure 3.8: Block diagram for measurement of ultrasonic resonator transfer function:
(1) sonic cell; (2) network analyzer (NWA) (Hewlett Packard 4195A); (3) signal splitter; (4)
pre-amplifier 40dB; (5) coaxial line; (6) computer for process control and data evaluation; (7)
Pt-100 thermometer.

evaluation, enabled automatic measurement routines. As presented in Fig.(3.9), the
resonator transfer function can not be described by one Lorentz function. Therefore
a fitting procedure of the transfer function is performed with the aid of a function,
which allows to fit, beside the principal mode, the satellite mode as well as the elec-
trical cross talk:

FT( f ) =

(
n

∑
j=1

A j

sinh(γ j l)
+UeiφU

)
eiφ0 (3.59)

with:
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Figure 3.9: Water measurement at resonance frequency of 12 MHz, and its satellite
modes.

j : mode number;
γ j = α j + i2π f/cs (propagation constant);
f j : resonance frequency ;

φ0 : global phase;
l : cell length;

U : amplitude of electrical cross talk;
φU : phase of electrical cross talk.

3.3.4 Pulse-modulated traveling wave methods

At frequencies above 3 MHz the distortion of resonator curves by higher order modes
may be so strong that the separation of the satellite peaks from the main resonance curve
becomes impossible. However, the simple proportionality, given by the expression:

pR(x)∼ e−αx, (3.60)

allows to measure quasi-directly the sound attenuation coefficientα. The principle of
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pulse-modulated method is shown in Fig.(3.10). Pulse-modulated measurement are per-
formed at the transducer fundamental frequency and its odd overtones which follow the
(2n+1) · fT-law. The shiftable receiver, as shown in Fig.(3.10), at the positionX1 detects
the acoustical signal and transfers this into an alternating voltageUR(X1). At the position
X2 the alternating voltageUR(X2) is received. Hence, the attenuation coefficientα follows
as:

α = − ln |UR(X1)|− ln |UR(X2)|
X1−X2

. (3.61)

Pulse modulation of the sound wave avoids overlaps between the original signal and

Figure 3.10: Principle of pulse-modulated method:(1) transducer ; (2a) receiver (start
position) ; (2b) receiver (end position) ; (3) exponentially decreasing sound wave ; (4) cell
walls.

multiply reflected signals as well as the electrical crosstalk. At small transducer spacing,
so-called acoustic delay lines (fused quartz) are used for pulse separation. The pres-
sure amplitudepR of the sound wave (taking into account multiple reflections) can be
expressed as:

pR(X, t) = pT

∣∣∣∣(1+ r)e−γXeiωt

1− r2e−2γX

∣∣∣∣= pT · (1+ r)e−αX√
1+ r4e−4αX +2r2e−2αX cos(2βX)

(3.62)

with:
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pT : amplitude of the sound pressure at the transducer;
pR : amplitude of the sound pressure at the receiver;
X : transducer spacing;
r : reflection coefficient;

β = 2π/λ : wave number;
γ = α+ iβ : complex propagation constance.

The cosine function of the transfer function Eq.(3.62) describes the so-calledλ/2-ripple,
caused by the multiple reflections of the signal at the transducers. Forαλ > 3 the denomi-
nator of Eq.(3.62) equals approximately 1, so that an exponential decay of the sound wave
pR∼ e−αX follows. In Fig.(3.11) a plot of Eq.(3.62) is given as an example. It illustrates
that at decreasing sample lengthX the standing wave contributions of the ultrasonic field
within the cell become more and more important.

Figure 3.11: Effects of the cosine term in Eq.(3.62) on the transfer function.

Fitting at a given frequencyf Eq.(3.62) to experimental data yields the absorption coef-
ficient α and the sound velocitycs = λ f of the sample liquid. To raise the accuracy of
α measurements it is usual to reduce the influence of the cosine function. This can be
realized with the help of the pulse modulation as mentioned before. The transducer signal
is pulsed with the aid of square-wave pulse, with the pulse length following the relation:
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τ <
2Xstart

cs
, (3.63)

τ = 2−10 µs. From this relation it is evident that the knowledge of the sound velocitycs

of the liquid sample is essential for correct pulse adjustments.

• Sound velocity measurements:
The transducer and the receiver have to be brought to a distance fulfillingX < τc/2
or X < 3/α. At the range of 20· λ, the transfer function is measured and the
experimental data at constant frequency are fitted to Eq.(3.62). Finally, with the
help ofcs = λ · f , the sound velocitycs can be calculated.

• Characteristic curve of electronic setup:
The accuracy of pulse methods depends on the accuracy of determining the char-
acteristic curve of the electronic equipment. In the measurement mode the signal
passes some electronic devices. At first, the voltageUR has to be demodulated and
amplified. Unfortunately, non-linear effects in the electronic circuit, especially in
the amplifier exist. Hence, the voltageUR is subject to the characteristic curve of
the receiverC (UR) and the sound pressure amplitude at the receiver quartz:

C (UR(X)) = const. · |pR|
|pT |

, (3.64)

Finally, it is possible, with the aid of linear regression to calculate the attenuation
coefficient as given:

α = [ln(C (UR(X +∆X)))− ln(C (UR(X)))]/∆X. (3.65)

Here∆X is the measurement distance. A central role in the determination of the
characteristic curve of the electronic equipment plays thecut-off piston attenua-
tor . Details about that device can be found in [63]. Calibration of the apparatus is
performed after each run by switching from the measuring branch to the reference
branch and utilizing the cut-off piston attenuator to vary the receiver voltage. The
voltage characteristic obtained by this calibration procedure allows the correction
of the originally measuredUR values.

• Electronic equipment and measuring procedure:
A block diagram of the electronic apparatus is shown in Fig.(3.12). The full lines

44



3.3 Ultrasonic techniques

Figure 3.12: Block diagram of the electronic apparatus:(1) frequency synthesizer; (2)
mixer; (3) pulse generator; (4) amplifier; (5) HF-change over switch; (6) matching stub
transformer; (7) fixed coaxial attenuator; (8) sample cell; (9) transmitter; (10) receiver; (11)
stepping-motor; (12) step-motor control; (13) control unit of distance meter (Heidenhain);
(14) PT-100 thermometer; (15) cut-off piston attenuator; (16) mixer, (17) oscillator , (18)
filter, (19) demodulator (20) amplifier; (21) boxcar integrator and A/D-converter; (22) pulse
generator; (23) oscilloscope; (24) personal computer; (25) relays driver card. (the full line
indicate the signal path and the dashed lines show the electronic control circuit).

indicate the signal path and the dashed lines show the electronic control circuit.
The frequency synthesizer (1) along with the pulse generator (3) and the mixer
(2) generates a pulse-modulated HF signal with frequency of measurementf . The
signal, via two coaxial HF-switches, is passed either through the measuring branch
or the reference branch of the comparator circuit. After passing the sample cell
or the below-cut-off piston attenuator, both signals are fed via HF change over
switch (5) to a superheterodyne receiver (16-20). A boxcar integrator (21) adds
up the signal over a sequence of 400 pulses. Finally, the result is transferred to a
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personal computer and evaluated using the data of lengthl , measured by the digital
distance meter (11) with control unit (13). The temperature is measured with a
Pt-100 thermometer (14).

• Pulse cell parameters: In the present thesis, two kinds of pulse cells have been
used to investigate the broadband spectrum of liquids, the 1-MHz- pulse-cell and
the 10-MHz-pulse-cell. Some relevant data of the cells are tabulated in Table (3.2).
In Fig.(3.14) a cell construction of a 1-MHz-pulse-cell is shown on the last page

cell 1–MHz– 10–MHz–
pulse cell pulse cell

transducer Quarz LiNbO3
rq[mm] 20 6
fq[MHz] 1.05 10.8

fn (2n+1) fq (2n+1) fq
fmax[MHz] 63 530

τ[µs] 5–10 2–4
distance meter optical, optical,

MT60 MT25
position of dist. meter axial axial

xmin[nm] 125 125
xmax[mm] 40 25

V[ml] ≈ 130 ≈ 10

Table 3.2: Pulse transmission cellsrq: radius andfq: fundamental frequency of transduc-
ers; fn: possible measurement frequencies;fmax: maximum frequency;τ: pulse length;xmin:
minimum andxmax: maximum distance between transmitter and receiver;V: sample volume.

of this Chapter. A description can be found in the figure caption. In Table (3.3)
experimental errors for measurements with the pulse cells are given.

3.4 Complementary measurement techniques

This section deals with additional instruments, which have been used to determine ther-
modynamic parameters of the investigated liquid systems.

• Sound velocitycs:
For some samples a high resolution ultrasonic velocimeter for measurement of the
sound velocitycs has been used. This device consists of two resonator cells, one
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cells frequency range absorption error
f α/ f 2 ∆α/α

[MHz] [10−12s2/m]
1–MHz–pulse cell 13≤ f ≤ 60 (α/ f 2) ≤ 0.1 3.0%

3 ≤ f ≤ 60 0.1≤ (α/ f 2) ≤ 1000 2.0%
30 ≤ f ≤ 50 2.0%

10–MHz-pulse cell 50≤ f ≤ 400 1.0%
400≤ f ≤ 480 1.5%

Table 3.3: Errors of the pulse transmission cells.

containing the sample and the other one a reference liquid. The fundamental fre-
quency of the transducers is 5 MHz. With the knowledge of the sound velocity
c1 of the reference substance and the cell-length difference∆l , which normally is
negligibly small, between both cells the relation:

c2 = 2 f2 ·
(

c1

2 f1
− ∆l

n

)
, (3.66)

is used to determine the sound velocityc2 = cs of the sample to within∆cs/cs≈
10−5. Heren denotes the numbern of mode, f1 is the resonance frequency in the
sample cell andf2 in the reference cell.

• Density ρ:
The densityρ was determined with the aid of a high precision vibrating tube den-
sitometer(∆ρ/ρ = 5 ·10−6, Physica DMA 5000, Anton Paar, Graz, Austria), with
built-in reference oscillator. The relation:

2π f =

√
k
m

=

√
k

M0 +ρV
, (3.67)

whereT = 1/ f is the period of vibrations with the vibration frequencyf , k is the
spring constant,m= M0 + ρV the mass,M0 the mass of the vibrating tube as well
asV the volume of the liquid, allows to determine the density of the liquid under
investigation.

• Heat capacity at constant pressureCp:
Another important parameter is the heat capacityCp at constant pressure. The
knowledge of this quantity, allows to calculate directly the critical amplitudeSBF of
the Bhattacharjee-Ferrell theory, which stands in focus of investigations in present
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work. The heat capacityCp was determined with the aid of a differential scanning
calorimeter (MicroCal Inc., Northampton, MA, USA). The device consists of two
cells, one containing the sample and the other one the reference liquid. The device
measures the excess heating power∆P when varying the temperatureT with the
scan rate∆T/∆t. The excess heat∆Q required for the temperature change is di-
rectly connected to∆P·∆t:

∆Q =
∫ t+∆t

t
∆P(t ′)dt′ ∼= ∆P·∆t (3.68)

With the aid of the thermodynamic relationCp = (∂Q/∂T)p it is possible to deter-
mine the heat capacity at constant pressure.

• Shear viscosityηs:
Static shear viscosity measurements of the critical systems have been performed
with a set of Ubbelohde-type capillary viscosimeters (Schott, Germany) or, in order
to avoid the risk of change in the the mixture composition due to preferential evap-
oration, with a falling ball viscosimeter (Haake, Karlsruhe, Germany). With some
samples4, a shear wave impedance spectrometer, operated between 5 MHz and 130
MHz, has been additionally used. The principle of measurement consists in the de-
termination of the shift in the series of resonance frequencyfn and of a change in
the quality factor resulting from loading a shear quartz with the liquid. The quartz
as the central part of a shear resonator [64] is a carefully cut planar AT-quartz disc,
beveled at its back. If the shearing stress oscillates so rapidly that its time period is
shorter that the time required for the molecules in the sample to adopt their relative
position, a dispersion in the shear viscosity results. The dispersion and the phase
lag are taken into account by using a frequency-dependent complex shear viscosity:

ηs( f ) = η′s( f )− iη′′s( f ). (3.69)

Hereη′s( f ) represents the irreversible viscous molecular processes and the imagi-
nary partiη′′s( f ) represents the reversible elastic processes.

4critical mixtures: 2,6-dimethylpyridine-water and triethylamine-water
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Figure 3.13: Cross section of a plano-concave resonator(1) sample cavity; (2) plane
piezo-electric transducer; (3) concave piezo-electric transducer; (4) layer of silicone rubber
with embedded electrical wires to ground of front side of transducer ; (5) transducer fixture
(stainless–steel); (6) flexible electric contact wire; (7) cell jacket; (8), (22), (23) channels for
circulating thermostat fluid ; (9), (10) inlet and outlet; (11) sealing O-ring; (12) main frame;
(13) frame at adjustable transducer side; (14) adjustable plate ; (15) ball-and-socket joint;
(16) screw for adjustment of (14); (17) spring ; (18) mounting plate; (19) ball bush guides;
(20) precision-gauge block establishing the distance to; (21) locking device; (24) thermostatic
coat.
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Figure 3.14: The cross section of a 1 MHz-pulse-cell(1) sample volume and (2) sample
reservoir; (3) thermostatic walls ; (4) transducer; (5) tiltable mounting plate; (6) ball-and-
socket joint; (7) receiver; (8) movable mounting plate; (9) ball bush guides; (10) lapped pin;
(11) spindle; (12) nut; (13) ratched wheel ; (14) adjustment screws for transducer parallelism;
(15) base plate; (16) mounting plate ; (17) channels for circulating thermostat fluid; (18) N–
connector; (19) outlet.
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4 Critical Contribution, Dynamic
Scaling and Crossover Theory

The following Chapter deals with the dynamic scaling aspects within the framework of
Bhattacharjee-Ferrell theory. Furthermore, relationships between the critical sound at-
tenuation and the dynamic scaling function are presented. Moreover, crossover effects for
binary and ternary fluids are presented.

4.1 Bhattacharjee-Ferrell scaling hypothesis -
binary systems

Critical phenomena, as all continuous phase transitions, Show universal characteristics of
their thermodynamic properties, if they belong to the same universality class and if their
dimension is identical. In Section (2.3.3) the concepts and consequences of critical slow-
ing down have been presented. In particular, the light scattering is well represented and
described by dynamic scaling theories, resulting from the mode-coupling considerations.
However, the treatment of critical ultrasonic attenuation necessitates the development of
new theories in order to get an access to critical fluctuations in a sound field. Bhattachar-
jee and Ferrell have presented [18], [19] a general theory of the critical ultrasonic attenua-
tion, based on an extension of the concept of the frequency-dependent specific heat. This
conception was firstly introduced by Herzfeld and Rice [65] in 1928.

4.2 Critical sound attenuation

For understanding the nature of critical sound attenuation, it is important to study the
propagation velocitycs of low-frequency sound in the vicinity of the critical point [20].
This kind of considerations allows to understand the coupling between the sound propa-
gation and sound attenuation as well as the sound dispersion of sound velocity near the
consolute point. The first thermodynamic studies of Bhattacharjee and Ferrell concen-
trated on the variation of volumeV with pressurep, due to sound propagation at constant
entropyS. As consequence of this examinations they got the isentropic compressibility
βS at constantS:
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4 Critical Contribution, Dynamic Scaling and Crossover Theory

βS = βS,c +
S′c
Vc

(
∂∆T
∂p

)
S
, (4.1)

where∆T = T−Tc(p) and indexc denotes critical parameters. Moreover, the adiabatic
temperature variation(∂∆T/∂p)S in Eq.(4.1), expressed by:(

∂∆T
∂p

)
S
=−(∂S/∂p)∆T

∂S/∂∆T)p
=−' TcS′c

Cp
=−g

Vc

Cp
(4.2)

produces a dimensionless parameterg, which represents the system-specificcoupling
constant and describes the magnitude of coupling between critical density fluctuations
and the propagating sound wave:

g =
TcS′c
Vc

. (4.3)

Substitution of Eq.(4.2) and Eq.(4.3) into Eq.(4.1) yields a relationship which is accessi-
ble to experiments:

βS = βS,c−
Vc

Tc

g2

Cp
. (4.4)

The sound velocity can be expressed as:

c−2
s = c−2

s,c −
g2

TcCp
, (4.5)

wherecs,c denotes the sound velocity at the critical point. Approximately one can de-
scribe the sound velocitycs by the following relation:

cs = cs,c +
g2c3

s,c

2TcCp
. (4.6)

The next step in the procedure of Bhattacharjee and Ferrell considers the frequencyω for
an applied pressure signal with its time dependence given by exp(−iωt). Furthermore,
with the aid of the frequency-dependent specific heatC̃p(ω) it is possible to express
the sound velocitycs in Eq.(4.6) and the compressibilityβS in Eq.(4.4) as frequency-
dependent quantities1:

1tilde denotes complex quantities, except for critical exponents
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4.2 Critical sound attenuation

c̃s = cs,c +
g2c3

s,c

2TcC̃p(ω)
(4.7)

and

β̃S = βS,c−
Vc

Tc

g2

C̃p
. (4.8)

It is assumed that the critical part of the specific heat determines the complex sound veloc-
ity in Eq.(4.7). Within the scope of dynamic scaling it is possible to write the dependence
of Cp on the reduced temperatureε:

Cp(ω = 0) ∝ ε−α̃0, (4.9)

whereα̃0 denotes the critical exponent. With the aid of the relationship of critical diffu-
sion coefficient in [66], [22], that controls the relaxation of the concentration fluctuations
and relates the diffusion coefficientD, to the viscosityηs and the correlation lengthξ of
critical fluctuations:

D =
kBT

6πηsξ
, (4.10)

(with the Boltzmanns’s constantkB, and absolute temperatureT), it is possible to give an
expression for the characteristic relaxation rate of a fluid:

Γ(ε) =
2D
ξ2 = Γ0εZ0ν̃, (4.11)

whereν̃ denotes the critical exponent of the correlation length andZ0 denotes the dy-
namic critical exponent. The amplitudeΓ0 is a characteristic system-dependent constant.
The system dependent valuesΓ0 of several binary systems are presented in Table (5.10,
s.121). However, with regard to ultrasonic spectroscopy, it might be interesting to inves-
tigate the frequency dependence of the specific heatCp. Using Eq.(4.11) one can express
the temperature dependence inCp in terms of the characteristic relaxation rateΓ:

Cp(ω = 0)∼ ε−α̃0⇒Cp(Γ,ω = 0)∼ Γ
−α̃0
Z0ν̃ , (4.12)

where the value of the exponent is:

α̃0

Z0ν̃
=

0.11
3.05×0.63

= 0.057. (4.13)
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4 Critical Contribution, Dynamic Scaling and Crossover Theory

Consequently, one can get the frequency dependence ofCp at Γ = 0, by using the mode-
coupling formalism. It follows:

C̃p(Γ = 0,ω) ∝
(
−iω

a

)−α̃0/Z0ν̃
, (4.14)

with a constanta. The attenuation coefficientα introduced in Chapter (3), is proportional
to:

α∼ ωImC̃p(ω)−1 ' −ω
(ReC̃p)2

ImC(0,ω) (4.15)

=
−ω2

a(ReC̃p)2

( a
ω

)1+α̃0/Z0 ˜̃ν
sin

(
−α̃0π
2Z0ν

)
' α̃0π

2Z0ν̃a
ω2

(ReC̃p)2

( a
ω

)1+α̃0/Z0ν̃

⇒
(

α
f 2

)
c
∼ f−1−α̃0/Z0ν̃ = f−1.057.

The plot ofα/ f 2 versusf−1.057 represents a straight line as is shown by the example of
then-pentanol-nitromethane mixture of critical composition in Fig.(4.1).

Up to now, the temperature dependence of the amplitude has not be considered. Bhat-
tacharjee and Ferrell give an expression for the amplitude of critical contribution:

Rc( f ) = (αλ)c = A(T) ·FBF(Ω) with A(T) = cs ·SBF ·Γ−α̃0/Z0ν̃ (4.16)

with:

SBF : the temperature dependent Bhattacharjee-Ferrell amplitude
FBF : the Bhattacharjee-Ferrell scaling function

Γ : relaxation rate of concentration fluctuations
Ω = ω/Γ : reduced frequency

cs : sound velocity.

According to Eq.(4.16), whereα̃0/Z0ν̃ = 0.057, the amplitude parameterA is related to
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4.2 Critical sound attenuation

Figure 4.1: Critical part in the frequency-normalized attenuation coefficient for the n-
pentanol-nitromethane mixture: atTc plotted as function off−1.06 [76].

the amplitude of the Bhattacharjee-Ferrell dynamic scaling model:

SBF =
π2δ∆Cpcs

2C2
pbTc

[
ΩBF

1/2Γ0

2π

]δ

g2 (4.17)

of the dynamic scaling model. Parameterg in Eq.(4.17) is the adiabatic coupling constant
defined by Eq.(4.3). According to the thermodynamic relation:

g = ρCp

(
dTc

dp
−

Tcαp

ρCp

)
(4.18)

it can be obtained from the slopedTc/dp in the pressure dependence of the critical tem-
perature along the critical line and to the thermal expansion coefficientαp at constant
pressure. The latter can be expressed with the aid of densityρ likewise at constant pres-
sure:

αp = ρ[dρ−1/dT]p (4.19)

In Eq.(4.17) ∆Cp as well asCpb are the amplitudes of the critical part and the background
part, respectively, of the heat capacity at constant pressure:

Cp(ε) = ∆Cpε−α̃0 +Cpb. (4.20)

55



4 Critical Contribution, Dynamic Scaling and Crossover Theory

The functionFBF(Ω) in Eq.(4.16), is the so-calledscaling function, which plays a central
role it the Bhattacharjee-Ferrell theory. The properties of this special function will be
treated with more details in the next section.

4.3 The scaling function Fx(Ω)

Last decades, various theoretical expressions for the universal scaling function of ultra-
sonic attenuation spectra have been presented for critically demixing binary fluids. In
Fig.(4.3) three prominent examples are shown.

Figure 4.2: Three prominent examples of scaling functions:the full line represents the
Bhattacharjee-Ferrell (BF), the dashed line the Folk-Moser (FM), and the dotted line the
Onuki (On) function [67].

In 1981 Bhattacharjee and Ferrell have presented the scaling function for sonic attenua-
tion in analytical form [18]:

F(Ω) =
3
π

∫ ∞

0

x ·dx
(1+x2)2 ·

Ω ·x · (1+x)1/2

x2 · (1+x)+Ω2 . (4.21)

Because of the difficulties to treat this integral, an empirical function has been developed
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4.3 The scaling function Fx(Ω)

later in [20]:

FBF(Ω) =
1[

1+0,4142
(Ω1/2

Ω

)1/2
]2 , (4.22)

with the half attenuation frequencyΩ1/2. The Folk-Moser (FM) scaling functionFBF(Ω)
as resulting from the renormalization group theory of the mode-coupling model [23], [24],
and the functionFOn(Ω), which Onuki (On) derived from an intuitive description of the
bulk viscosity near a consolute point, published in [25] and [26], are not available from
theory in analytical form. Therefore, Behrends at al. developed a quasi-universal em-
pirical form of scaling functions [67], in correspondence with the empirical function of
Bhattacharjee and Ferrell. These forms are shown in Fig.(4.3), and described by follow-
ing relation:

Fx(Ω) =
[
1+
(

Ωx

Ω

)nx
]−2

=

[
1+0.4142

(
Ωx

1/2

Ω

)nx
]−2

(4.23)

wherex denotesBF, FM andOn, whileΩx andΩx
1/2 denote a characteristic frequency and

the half-attenuation frequency of the scaling function, respectively. The crucial parameter
in Eq.(4.23) is the exponentnx, which is related to the logarithmic slopeSx(Ω = Ω1/2) =
dFx(Ω)/dln(Ω)|Ω1/2

, that dominates the shape of the scaling functions. In [67] the fol-
lowing parameter values are given: BF,Ω1/2 = 2.1, nx = 0.500,Sx = 0.146; FM,Ω1/2 =
3.1(1), nx = 0.635(5), Sx = 0.186; On,Ω1/2 = 6.2(1), nx = 0.500(2), Sx = 0.146;). Fi-
nally, using the relation

Ωx
1/2 =

2π f
Γ(ε)

[
1

0.4142

((
(αλ)c(Tc)
(αλ)c(T)

)1/2

−1

)]1/nx

(4.24)

to evaluate experimental attenuation coefficient data along with relaxation ratesΓ(ε) from
light scattering and shear viscosity, it is possible to decide about the quality and validity
of the scaling functions.

The determination of the scaling functionFx(Ω) is usually based on the fact thatA and
cs in Eq.(4.16) are only weakly dependent upon temperature. Therefore, the scaling func-
tion can be derived as the ratio:

Fx(Ω) = (αλ)c( f ,T)/(αλ)c( f ,Tc), Fx(Ω) = 1 for T→ Tc (4.25)

The measured total attenuation data contain contribution from critical fluctuation but also
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4 Critical Contribution, Dynamic Scaling and Crossover Theory

from noncritical processes. Assuming that all parts contribute to the ultrasonic attenua-
tion spectrum additively, the ultrasonic spectra can be analytically represented as a sum
(shown in Section (3.3.1.1) of N Debye terms, the background contribution and the criti-
cal contribution: (

α
f 2

)
= SBF f−(1+δ) ·FBF︸ ︷︷ ︸

R+
c ( f )

+
N

∑
n=1

ADn

1+ω2τ2
Dn︸ ︷︷ ︸

R+
Dn

( f )

+
B
cs

. (4.26)

The Debye-terms2 can be likewise replaced by Hill-terms as has been shown also in Sec-
tion (3.3.1.1).

4.4 The crossover theory in binary mixtures

General conceptions of crossover theory

The classical theories by van der Waals, Bertholt, and Dieterici describe pretty well the
hydrodynamic and thermodynamic behavior of classical fluids in the mean-field region.
Moreover, all their classical equations show the existence of a critical point. Unfortu-
nately, they do not predict the non-analytic behavior in real systems. This fluid domain has
been treated by Wilson, Fisher and Wagner within the framework of the renormalization-
group theory. The conceptions and formalisms of this theory lead to a description in terms
of scaling laws near the consolute point. Furthermore, renormalization-group theory has
been quite successful in calculations and predictions of critical exponents. However, due
to crossover effects this theory has a limited range of validity.

Critical Region← Crossover Region←Mean-Field (4.27)

Unfortunately, the theoretical descriptions are valid only in a range extremely close to the
critical point whenε→ 0. There is no conception of extrapolation from the mean-field
to the critical region. This so-calledcrossover-rangehas been treated 1986 in a paper
by Albright at al [68], consistent with the renormalization-group theory. Their crossover
descriptions for properties of fluids take into account, that besides the contributions from
critical fluctuations to the critical behavior, there are further degrees of freedom, such as
changes of molecular conformations and of the extent of hydrogen bonding. These kinds
of effects do not couple to the critical fluctuations. Therefore, it is adequate to divide the

2note: (+) inR+
c ( f ) or R+

D( f ) refers to the form of presentation of ultrasonic spectra (attenuation-per-
wavelength(αλ) or (α/ f 2): RD( f ) · f

cs
= R+

D( f )
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4.4 The crossover theory in binary mixtures

modes of the considered liquid system into those that show only short range order and
high frequency fluctuations and are only weakly coupled and into such which show long
range fluctuations and are coupled strongly. These last ones lead to non-analytic behavior
near the consolute point. Consequently, the existence of a cut-offΛ in the wave numbers
of fluctuations, has to be taken into account when fluctuation dominated behavior of the
system is studied. This view has been successfully applied to the van der Waals gas.

The Crossover corrections

In the case of the dynamic light scattering, the shear viscosity as well as ultrasonic at-
tenuation spectroscopy crossover corrections have to be taken into account whenT is not
sufficiently close toTc. It has been shown in [16], [69] and [17], that close to the critical
point, in the asymptotic limit, the shear viscosity can be described by the expression:

ηs(ε) = ηbg(Q0ξ)Zη, (4.28)

hereQ0 denotes the system-dependent critical amplitude andξ the fluctuation correlation
length. The background viscosityηbg is given by the relation:

ηbg(ε) = Aη exp[Bη/(T−Tη)] or ηbg(ε) = Aη exp[Bη/T] (4.29)

with the system specific parametersAη, Bη, andTη and with the absolute temperatureT.
The inverse critical amplitude of the viscosityQ−1

0 , can be written as:

1
Q0

=
e4/3

2

(
1

qD
+

1
qc

)
, (4.30)

whereqc andqD are the noncritical cut-off wave numbers. Eq.(4.28) is correct only in a
region close to the critical point. Therefore, when treating data over a large temperature
range, it is essential to consider the crossover corrections as has been presented by Burstyn
at al. [16]. In that paper Burstyn et al. introduce acrossover functionH(ξ,qc,qD), which
is also dependent on the noncritical cut-off wave numbersqc,qD as well as the correlation
lengthξ:

ηs(ε) = ηbg(T)exp(ZηH(ξ(ε),qD,qc)) (4.31)

with

H =
1
12
·sin(3·ΨD)− 1

4qD
·ξ ·sin(2·ΨD)
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+
1

(qcξ)2 ·
[
1− 5

4
(qcξ)2sin(ΨD)

]
− 1

(qcξ)3 ·
{[

1− 3
2
(qcξ)2

]
·ΨD−|(qcξ)2−1|3/2 ·L(ω̃)

}
(4.32)

where

ΨD = arccos(1+q2
D ·ξ2)−1/2

ω̃ =
∣∣∣∣qcξ−1
qcξ+1

∣∣∣∣1/2

tan(ΨD/2)

L(ω̃) = ln

(
1+ ω̃
1− ω̃

)
if qcξ > 1

= 2·arctan|ω̃| if qcξ≤ 1

For largeε, the crossover function defined by Eq.(4.31) behaves asH(ξ(ε),qD,qc)→ 0,
so thatη→ ηbg. In the asymptotic limit the Eq.(4.31) simplifies to the power law in
Eq.(4.28). The influence of the crossover function is not only restricted to the shear vis-
cosity. The cut-off wave numbersqc andqD play also an important role in the mutual
diffusion coefficient, which is given by:

D = ∆D+Dbg. (4.33)

The value∆D represents the singular contribution, which is shaped by the Kawasaki func-
tion ΩK [66]:

ΩK(x) =
3
4x

[
1+x2 +

(
x3− 1

x

)
arctanx

]
, (4.34)

with x = qξ. The mutual diffusion is then represented by:

D = 1,03· kB ·T
6πηsξ

·ΩK(x)
[
1+
(x

2

)2
]zη/2

︸ ︷︷ ︸
∆D

+
kB ·T

16ηb ·ξ
·
(

1+q2ξ2

q̃c ·ξ

)
︸ ︷︷ ︸

Dbg

(4.35)

with:
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ηbg : background viscosity;
qc : cut off wave number;
q̃c : 1

qc
+ 1

2·qD
;

ΩK(x) : Kawasaki function Eq.(4.34));
ξ : correlation length.

Another important consequence resulting from crossover corrections is the significant in-
fluence of the valuesξ0 andqc on the reduced temperatureε. Bhattacharjee and Ferrell
have presented a correction expression that is based on the use of an effective reduced
temperaturẽε, which is given by:

ε̃ = ε
[
1+β

1
ξqc

]1/2

, (4.36)

with the parameterβ = 1.18. The significance of the cut-off wave numberqc has been
demonstrated in [70]; due to a large value ofqc it was found|̃ε− ε|/ε < 5·10−3.

4.5 The crossover theory in ternary mixtures

The crossover theory has been developed for binary mixtures. It is not self-evident that
this theory is also valid for ternary mixtures. Moreover, the renormalization groupε-
expansion predicts a dependence of the critical exponent of viscosityZη upon the dimen-
sion of the considered system, [71]:

Zη =
1
19

ε+0.018ε2, (4.37)

with ε (note, in this caseε is not the reduced temperature), the critical dimensiondc = 4,
andε = dc−d, whered is the dimension of the system. Consequently, Eq.(4.37) predicts
the valueε/19 for a 3d-Ising system, in first order forZη. Taking into account the second
order corrections,Zη = 0.065 results. This value has been predicted by the mode-coupling
theory. In the case of tricritical point the critical dimension is reduced todc = 3, as has
been given by Pfeuty [72]. As a consequence,ε = 0 and thereforeZη = 0. It seems
that there is no critical divergence of the viscosity. However, the ternary system, that has
been investigated it this work is of type 2a (see Section (2.4.2)) and belongs to the same
universality class for dynamical properties as the binary fluids. Thus, there is no reason
to treat the experimental data different from the binary mixtures. Furthermore, it can be
expected, that the crossover corrections are likewise valid.
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5 Experimental Verification of
Dynamic Scaling Theories and
Discussions

In the following chapter, the results of measurements of dynamic light scattering, shear
viscosity and ultrasonic spectroscopy as well as the data evaluation procedures are pre-
sented. The first Section describes the strategy in the fitting procedure of the scaling
function within the framework of crossover theories as well as the Bhattacharjee-Ferrell
theory. The second section lists the investigated substances and critical systems as well
as their preparation. The third, fourth and fifth sections present the final results of the
studies, classified by the complexity of the ultrasonic attenuation spectra: systems with-
out or with one additional noncritical relaxation term, systems with complex background
contributions, and ternary mixtures. The sixth section deals with correlations, e.g. with
relations between quantities of different critical systems.

5.1 Strategies of verifying the scaling function

The formalism for the verification of the critical parameters and the scaling function pre-
sented in Chapter (4) calls for a specific treatment of experimental data within the frame-
work of crossover formalisms as well as the Bhattacharjee-Ferrell theory of critical sound
attenuation, Fig.(5.1). In principle, the scaling function can be derived directly from the
ultrasonic measurements, by taking into account the Bhattacharjee-Ferrell theory. How-
ever, due to effects of critical slowing nearTc as well as the enormously increasing atten-
uation coefficient toward low frequencies, only the high frequency part of the critical con-
tribution to the ultrasonic spectra is obtainable from attenuation coefficient measurements.
ThereforeΓUS is only inaccurately known from acoustical spectrometry. For this reason
and in order to reduce the number of unknown parameters in ultrasonic spectroscopy, the
relaxation rate of order-parameter fluctuations has been additionally determined by shear
viscosity and mutual diffusion coefficient measurements. Consequently, no distinction
between the relaxation rate of critical fluctuations from ultrasonic measurements,ΓUS,
and that from dynamic light scattering,ΓDLS, will be made in the following:

ΓDLS
0

!= ΓUS
0 . (5.1)
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Figure 5.1: Scheme of fitting procedures for the derivation of the scaling function.

This step is justified, because of the assumptions made by Bhattacharjee and Ferrell. Ac-
cording to their theory, local concentration fluctuations detected in the light scattering ex-
periments are controlled by diffusion, Eq.(4.10), of almost spherically shaped areas with
concentration different from the mean. These fluctuating areas couple to the ultrasonic
wave [19]. Hence, the assumption for the characteristic relaxation rateΓDLS

0 = ΓUS
0 = Γ0

can be done. In order to determine the characteristic relaxation rateΓ0, dynamic light
scattering and shear viscosity measurements have to be combined. Using the relation
Eq.(4.11) and the Kawasaki-Ferrell relation, Eq.(4.10) can be rewritten to yield the rela-
xation rate of concentration fluctuations as a function of the diffusion coefficient and the
shear viscosity:

Γ =
kBT

72π2η2
sD3 . (5.2)

The mutual diffusion coefficient as well as the fluctuation correlation lengthξ can be
derived from dynamic light scattering, according to the Eqs.(4.35). Both quantities are
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5.1 Strategies of verifying the scaling function

related by the dynamic scaling hypothesis [33], [34], [22], [78] presented in Eq.(4.11).
However, crossover corrections have also to be taken into account. The crossover function
H(ξ(ε),qc,qD) contains an explicit dependence upon the fluctuation correlation lengthξ
and on the cut-off wave numbersqc andqD. Parametersξ, qD andqc also control the
mutual diffusion coefficient according to Eq.(4.35). Therefore, with the aid of an itera-
tive fitting procedure the complicated expression of the crossover functionH in Eq.(4.31)
has to be applied simultaneously to the experimental shear viscosity and dynamic light
scattering data. Only this kind of data treatment allows to fulfil Eqs.(4.31) and (4.35) si-
multaneously and to thus yield consistent results for the parametersξ0, qc andqD. Finally,
the value forΓ0 determined in this way can be used in Eq.(4.16), that represents the criti-
cal attenuation contribution and controls the frequency as well as temperature dependence
of the scaling functionF(Ω). However, the critical amplitude is still an adjustable param-
eter. It weakly depends upon frequency due to the small critical exponentδ = α̃0/(Z0ν̃) in
Eq.(4.17). If experimental heat capacity data are available, it is possible to calculate, with
the aid of the Eq.(4.17) the amplitudeSBF in Eq.(4.16) from thermodynamical quantities
of critical mixture. Alternatively it is possible to extract the the amplitude from the ul-
trasonic spectra and to estimate the adiabatic coupling constantg according to Eq.(4.18).
Furthermore, the amplitude of the correlation lengthξ can be additionally verified with
the help of heat capacity data using the so-called two-scale-factor universality relation
[79]:

ξ0 =
(

kBX
A+

)1/3

(5.3)

with Boltzmann’s constantkB, and withX = (1.966± 0.017) · 10−2 and X = (1.88±
0.015) ·10−2 from renormalization-group and series calculations, respectively, [79], [80],
with the amplitude factorA+ of the singular contribution to the heat capacity at constant
pressure in the one-phase regime [74], [75],

Cp =
A+

α̃0
ε−α̃0(1+D+ε∆)+E+ε+B+, (5.4)

with the heat critical exponent̃α0 = 0.11 and∆ = 0.51±0.03. However, as was men-
tioned in Section (4.4) the values forξ0 andqc lead to noticeable changes of the reduced
temperaturesε in the treatment of ultrasonic measurements. Hence, in the determina-
tion of the scaling function the reduced temperaturesε have to be corrected to get the
effective reduced temperatureε̃ according to Eq.(4.36). The fitting procedures applied on
the basis of the dynamic scaling hypothesis and the crossover formalism are summarized
schematically in Fig.(5.1).
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5.2 Preparation of critical mixtures

substance formula supplier purity molar mass
[g/mol]

n-butanolr C4H10O Fluka ≥ 99% 74.12
waterr H2O deionized 18.00

and bidistilled
nitromethane CH3NO2 Fluka ≥ 99% 61.04
n-pentanol C5H12O Fluka ≥ 99% 88.15
nitroethane C2H5NO2 Aldrich ≥ 99.5% 75.08
3-methylpentane C6H14 Aldrich ≥ 99% 86.20
cyclohexane C6H12 Aldrich ≥ 99.5% 84.16
methanol CH4O Fluka ≥ 99.8% 32.04
n-hexane C6H14 Aldrich ≥ 99% 86.18
ethanol C2H6O Fluka ≥ 99% 46.07
n-dodecane C12H26 Aldrich ≥ 99% 170.34
isobutoxyethanol C6H14O2 Wako ≥ 97% 118.17
2,6-dimethylpyridine C7H9N Aldrich ≥ 99% 107.15
triethylamine C6H15N Aldrich ≥ 99% 101.19

Table 5.1: Substances used:indexr denotes substance also used for reference measurements
and calibrations.

All non-aqueous constituents of the mixtures presented in Table (5.1), have been used
as delivered, except for the substance isobutoxyethanol which was additionally purified
by fractional distillation at 318 K and at a reduced pressure of 23 mbar in a concentric tube
column of 64 real plates. This distillation procedure has been performed several times, to
get isobutoxyethanol surfactant as pure as possible. Before preparing mixtures, the con-
stituents were degassed in an ultrasonic bath or vacuum oven. This preparation step was
done to avoid gas bubbles that might grow in the cells during measurements. In order to
avoid preferential evaporation, the degassing in a vacuum oven has been performed before
preparing the mixtures. Finally, mixtures have been prepared under nitrogen gas atmo-
sphere by weighing appropriate amounts of the constituents into suitable flasks. Uptake
of water from the air was avoided thereby. The critical point of a mixture was determined
visually by taking into account the criterion of critical opalescence as well as the criterion
of equal volume (Section2.3.5). Additionally, the existence of the critical point has been
determined by densitometer measurements (Anton Paar 5000) in Section (3.4). In the
case of ultrasonic measurements, calibrations for resonator losses were performed after-
wards, using reference liquids: butanol for mixtures listed in Table (5.2) and deionized
bidistilled water for aqueous mixtures listed in Table (5.3). In addition, water has been
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5.3 Binary systems without and with one additional noncritical relaxation term

used to determine the cell length of the resonators. The critical parameters like critical
mole fractionxc and the critical temperatureTc of investigated systems are given in Table
(5.2) for binary systems without or with one additional noncritical relaxation term, and in
Table (5.3) for binary systems with complex background contributions.

critical mixture critical conc.xc in mole frc. critical Temp.Tc

of first component [K]
n-pentanol-nitromethane (PE-NM) 0.385 300.95
nitroethane-3-methylpentane (NE-3MP) 0.500 299.68
nitroethane-cyclohexane (NE-CH) 0.452 296.46
methanol-hexane (ME-HEX) 0.500 307.74
ethanol-dodecane (ET-DOD) 0.687 285.82

Table 5.2: Critical composition and temperature of binary systems without or with one
additional noncritical relaxation term.

critical mixture critical conc.xc in mole frc. critical Temp.Tc

of first constituent [K]
isobutoxyethanol-water (i−C4E1/H2O) 0.070 298.10
2,6-dimethylpyridine-water (2,6-DMP-H2O) 0.065 306.83
triethylamine-water (TEA-H2O) 0.076 291.36

Table 5.3: Critical composition and temperature of binary systems with complex back-
ground contributions.

5.3 Binary systems without and with one additional
noncritical relaxation term

Because of the complexity of the Bhattacharjee-Ferrell formalism, it is useful to first
study critical systems for which additional chemical relaxation contributions in the range
of frequencies of measurements are not expected in the ultrasonic spectra. It was thus in-
teresting to perform investigations into the critical dynamics of binary mixtures of critical
composition, such asn-pentanol-nitromethane (n-PE-NM) [76], nitroethane-cyclohexane
(NE-CH) [90], methanol-cyclohexane (ME-HEX) [93], ethanol-dodecane (ET-DOD) [99],
as well as nitroethane-3-methylpentane (NE-3MP) [86], for which no such contributions
from elementary molecular processes are expected.
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.2: Phase transition curve ofn-pentanol-nitromethane, mole fractionx versus
temperature, with the critical concentration of mole fraction xc = 0.385and the critical
temperature Tc = 300.45: 4 represent literature data, [81].

5.3.1 Phase diagram and critical temperature.

An example of a binodale curve of the binary system (n-PE-NM) [76] at mole fractionsx
of alcohol between 0.3 and 0.45 is shown in Fig.(5.2). The critical point can be derived
from density measurements shown, as an example, for the (TEA-H2O) mixture of critical
composition in Fig.(5.3), as well as from the half-power bandwidth∆ fr of a resonance of
an ultrasonic resonator filled with the sample. An example of∆ fr is displayed in Fig.(5.4)
for the binary critical mixture (ME-HEX). The nonlinear increase in the half-power band-
width, when approaching the consolute point, is an indicator of the influence of critical
fluctuations. At the critical point, the half-power bandwidth data reach a maximum. In
the multiphase regime the values of the half-power bandwidth of a resonance decrease.
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5.3 Binary systems without and with one additional noncritical relaxation term

Figure 5.3: Density of the binary system triethylamine-water of critical composition
with lower critical temperature.

5.3.2 Dynamic light scattering, shear viscosity ηs and
characteristic relaxation rate Γ0

As mentioned in the previous section, in order to reduce the number of unknown parame-
ters, ultrasonic spectrometry has been complemented by the dynamic light scattering and
shear viscosity measurements. The lifetime of critical fluctuationsτξ has been determined
by dynamic light scattering and the shear viscosity measurements as presented in Chapter
(2). The shear viscosity has been measured as a function of temperature using an capil-
lary and a falling ball viscosimeter. These two methods have been used to complement
each other as well as to control the shear rate dependence inηs. In the (NE-CH) system
it was found that the shear rate dependence in the viscosity data is within the limits of
experimental errors∆ηs/ηs = 0.02. Both methods of measurements agree with one other
as is shown by the data in Fig.(5.5). However, in order to carefully treat the capillary
viscosimeter data, the shear rate corrections have to be taken into account. Those correc-
tions have to be performed, because the critical temperature close to the consolute point
changes due to macroscopic non-linear effects. The relation between geometrical param-
eters of the capillary and the shear rate was given by Kohlrausch:
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.4: Half-power bandwidth ∆ fr in Hz of an acoustical resonance at 790 kHz of a
cylindrical cavity resonator filled with the mixture methanol- n-hexane versus tempera-
ture T in oC. The system exhibits an upper critical temperature.

γ̇ =
4∆V

π ·∆t ·R3 (5.5)

whereRdenotes the radius of the capillary,∆V the volume of the fluid running during∆t,
the duration of measurement. The kinematic viscosity is defined by:

ηkin =
π ·R4 ·g
8· l ·∆V

·h︸ ︷︷ ︸
K−apparative constant

·∆t, (5.6)

with the length of capillaryl , the falling heighth andg the gravitation constant. Finally,
the so-called effective shear rate results:

γ̇ =
∂u
∂x
≈K −1 · R·g·h

2
·∆t−1. (5.7)
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5.3 Binary systems without and with one additional noncritical relaxation term

Figure 5.5: Shear viscosityηs of the (NE-CH) mixture of critical composition versus
absolute temperature: The full curve and the dashed line are graphs of the shear viscosity
and the background contribution of the viscosity, respectively. In the inset, the shear viscosity
data of the (NE-3MP) system (•) are given along with those of the (NE-CH) mixture of
critical composition (N).

This effective shear rate has an influence on the critical temperatureTc. With Sas a cor-
rection parameter, the critical temperature has to be written as:

Tc(S) =
Tc(S= 0)

1±0.0832·
(

16ηξ3·S
kbT

) , (5.8)

where in the equation(+) refers to an upper critical point (systems in Table (5.2)) and
(−) to a lower critical point (systems in Table (5.3)). Independent on the magnitude of
shear rate dependence, the
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.6: Bilogarithmic plot D− ε of
(n-PE-NM), in which the line represents
power law behavior, Eq.(5.10).

corrections were taken into account
automatically in every fitting procedure.
The shear viscosity data of the system
(NE-3MP) [86] are presented in the in-
set of Fig.(5.5). The viscosity data have
been completed by literature data [87].
The experimental data display a back-
ground contribution, slowly decreasing
with the temperature close to the criti-
cal point, and a singular part that dis-
tinctly increases when approachingTc.
The background contributionηbg has
been fitted by the Eq.(4.29) and the com-
plete viscosity data by the Eq.(4.31), tak-
ing into account the crossover function
H(ξ(ε),qD,qc). By simultaneously fitting the correlation timeτc and the shear viscosity
data, the fluctuation correlation lengthξ was determined. In Fig.(5.7) the bilogarithmic

Figure 5.7: Fluctuation correlation length of the systems (NE-CH)◦, (NE-3MP)4, (ET-
DOD) � versus reduced temperature:lines represent the power lawξ = ξ0εν̃.
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5.3 Binary systems without and with one additional noncritical relaxation term

Figure 5.8: Plot of the diffusion coefficientD of the binary system (n-PE-NM) versus
reduced temperatureε. The line is the graph of Eq.(4.35).

plots of the correlation lengthξ versusε of the systems (NE-CH), (NE-3MP), and (ET-
DOD) are compared with each other. According to, the frequently used power law:

ξ = ξ0εν̃, (5.9)

with the critical exponent̃ν, and the amplitudesξ0 = 0.160 nm for (NE-CH),ξ0 = 0.230
nm for (NE-3MP) andξ0 = 0.370 nm for (ET-DOD). A plot of the diffusion coefficient
versus reduced temperature of the example (n-PE-NM) is given in Fig.(5.8). The mutual
diffusion coefficient, is also assumed to consist of a singular part∆D and a background
partDbg, as was presented in Eq.(4.33), and likewise depends on parametersξ, qD, andqc.
Another bilogarithmic plot of the diffusion coefficient of the same mixture versus reduced
temperatureε is given in Fig.(5.6), where also the power law:

D = D0εν∗ (5.10)

is shown . Hereν∗ = 0.664 denotes the critical exponent from mode coupling theory.
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From a least-squares fitting procedureD0 = (11.1±0.5) ·10−10m2s−1 followed. How-
ever, the diffusion coefficient data exhibit some deviations from the power law behav-
ior. These deviations may result from the insufficient temperature control (±0.03) in the
measurements. Finally, according to Eq.(5.2) taking into account crossover effects, the
characteristic relaxation rateΓ0(ε) of order parameter fluctuations can be determined ac-
cording to the dynamic scaling hypothesis, Eq.(4.11). Over a significant range of reduced
temperatures the relaxation rate follows power law Eq.(4.11) with the theoretical criti-
cal exponentZ0ν̃. An example of bilogarithmic plot ofΓ0(ε) of the system (NE-CH)
is given in Fig.(5.9) The resulting parameters for other systems investigated by dynamic

Figure 5.9: Bilogarithmic plot of the relaxation rate Γ of critical fluctuations versus
reduced temperatureε of the binary system (NE-CH): The line representsΓ = Γ0εZ0ν̃,
with Γ0 = 156·109s−1.

light scattering and shear viscosity measurements are listed in Table (5.9).

5.4 Fluctuation correlation length

As presented in Section (5.1), the amplitudeξ0 of the fluctuation correlation length, ob-
tained from the shear viscosity and dynamic light scattering measurements, can be ad-
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5.4 Fluctuation correlation length

Figure 5.10: DSC heat capacity data as obtained from one run in the downscan mode for
the methanol-n-hexane mixture of critical composition nearTc plotted versus reduced
temperature ε: (scan-rate 1.05 Kh−1).

ditionally verified or disproved with the aid of the two-scale factor universality relation.
This evaluation procedure can be done if heat capacity data are available. An exam-
ple of heat capacity data from one run of a differential scanning calorimeter for the
binary mixture (ME-HEX) is shown in Fig.(5.10). According to Eq.(5.4), a nonlinear
least-squares regression analysis of the data in Fig.(5.10), includingCp data in an ex-
tended temperature range(Tc ≤ T ≤ Tc +10 K), yieldsA+/α0 = (6.99±0.02)×10−2 J
/(cm3 K), D+ = 5.6±0.1,E+ = −(3.1±0.1) J /(cm3 K ), andB+ = (1.600±0.002) J
/(cm3 K). Reevaluation of heat capacities for the (ME-HEX) system measured with an
adiabatic calorimeter [92] yielded the somewhat higher valueA+/α0 = (8± 1)× 10−2

J /(cm3 K), in fair agreement with the result from the present measurements. Using
A+/α0 = 6.99× 10−2 J /(cm3 K) the amplitudeξ0 = 0.32 nm follows from Eq.(5.3)
which perfectly agrees withξ0 = (0.33±0.03) nm as resulting from the combined eval-
uation of the shear viscosity and dynamic light scattering data. This agreement may be
taken as an indication of consistency of the evaluation procedure. If heat capacity data
were available from measurements or from literature, such calculations have been per-
formed for every mixture (see results summarized in Table (5.9)).

75



5 Experimental Verification of Dynamic Scaling Theories and Discussions

5.5 Ultrasonic spectrometry

At frequenciesf between 180 kHz and 500 MHz broad-band ultrasonic spectra of binary
mixtures have been measured to verify non-existence of additional relaxation terms in the
measuring range as well as to determine the background contribution(α/ f 2)bg. At three
temperatures the ultrasonic absorption spectrum of the (NE-CH) mixture of critical com-
position is shown in the homogenous phase in Fig.(5.11). In order to accentuate the low
frequency part of the spectra, data are shown in the frequency normalized format

(α/ f 2) = (αλ)/( f cs). (5.11)

In this format the data approach asymptotically the frequency independent value (data
extrapolated to frequencies far above the frequency range of measurements):

lim
f→∞

(α/ f 2) = (α/ f 2)bg = B′(T), (5.12)

The constant frequency-independent contribution which is indicated in Fig.(5.11) has to
be taken into account in the description of the ultrasonic spectra. Assuming, that the crit-
ical fluctuations contribute additively to the ultrasonic spectrum, the spectral description
of measured data can be displayed as a sum of the critical contributionRc( f ) = (αλ)c

Eq.(4.16), governed by the dynamic scaling theory, and the background contribution
(αλ)bg:

(αλ) = Rc( f )+B f. (5.13)

In Fig.(5.12) the broad band spectra of the critical mixture (n-PE-NM) at three temper-
atures are shown. The strong increase of(α/ f 2) data with decreasing frequency and
approaching of the critical temperature, indicates the critical contribution to the spectra.
Obviously the critical fluctuations contribute extensively to the sound attenuation spectra
in the low frequency range. Therefore, for the purpose of verifying the dynamic scaling
model, the low frequency behavior between 180 kHz and 1.8 MHz has been studied with
more details. For measurements at those frequencies a plano-concave resonator method
has been employed which enablesα to be determined as a function of frequency and tem-
perature with a minimum risk of effects from mechanical stress of the cell asT is varied.
Examples of cavity resonator measurements are displayed in Fig.(5.13) for the systems
(NE-3MP) and (n-PE-NM). The low frequency spectra demonstrate a non-linear increase
of the sound attenuation coefficientα with decreasingf , caused by critical contributions.
Unfortunately, due to this behavior the number of measurable data points decreases asTc

is approached, especially in the case of (n-PE-NM), for which the sound attenuation is
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5.5 Ultrasonic spectrometry

Figure 5.11: Frequency normalized ultrasonic attenuation spectra for the (NE-CH) mix-
ture of critical composition at three temperatures:(N): 28.3 oC , (�):25.6 oC, (•): 24.0
oC.

exceptionally large. According to the Bhattacharjee-Ferrell theory the scaling function
FBF(Ω) can be derived, rewriting Eq.(4.25) as ratio:

FBF(Ω) =
cs(Tc)A(Tc)
cs(T)A(T)︸ ︷︷ ︸

F∗BF

· (αλ)c( f ,T)
(αλ)c( f ,Tc)

= F∗BF ·
(αλ)( f ,T)− (αλ)bg( f ,T)
(αλ)( f ,T)− (αλ)bg( f ,Tc)

. (5.14)

Usually, it is assumed that the temperature dependence in the sound velocitycs and also in
the amplitudeA of the attenuation coefficient is sufficiently small to be neglected so that
F∗BF = 1 can be used in Eq.(5.14), as originally proposed by Bhattacharjee and Ferrell.
This precondition, however, is not always fulfilled. A closer examination of the binary
critical mixture (NE-CH) points at an unusual dependence of the critical amplitudeSBF

on temperature [90]. In the next section this amplitude behavior will be discussed with
more details. Moreover, for (ME-HEX) as well as (ET-DOD) it has been found that, al-
though both considered constituents of the binary systems do not reveal indications of
a chemical relaxation in pure liquids, the mixture indicates a relaxation due to an alco-
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.12: Frequency normalized ultrasonic attenuation spectra for the (PE-NM)
mixture of critical composition at three temperatures: (N): 27.82 oC , (�): 29.42 oC,
(•): 34.84oC.

hol association mechanism. This indication is confirmed by literature data [91] as well
as by present measurements of mixtures with noncritical composition (weight fraction
of methanol 0.0074, with the (ME-HEX) system, and weight fraction of ethanol 0.008,
with the system (ET-DOD)). A spectrum for the latter is shown in Fig.(5.14). A relaxa-
tion process, with relaxation time in the nanosecond range of has been found at 25oC
(2 ns (ME-HEX)), (19.1 ns (ET-DOD)). The inset in Fig.(5.14) represents a(αλ) plot.
The existence of relaxation characteristics in the spectra means, that the background part
(αλ)bg can not be simply derived from high frequency attenuation coefficient extrapo-
lation but has to be determined from(αλ) in a more sophisticated way. The additional
relaxation term has to be taken into account in the background contribution, in Eq.(5.14).
An alternative treatment of the additional chemical contribution to the sound attenuation
spectra can be performed, if the temperature dependence of the relaxation timeτD as well
as of the Debye amplitudeAD is known. In such cases the ultrasonic spectrum can be
represented by following expression, according to Eq.(4.26), where the description of a
ultrasonic spectrum has been extended by a Debye-term.
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5.5 Ultrasonic spectrometry

Figure 5.13: Ultrasonic attenuation spectra for mixtures of critical composition. Left
Figure (NE-3MP): (◦), T=304.20 K; (N), T=303.34 K; (4), T=302.20 K; (5), T=301.78 K;
(H), T=301.34 K; (•), T ≈ 299.68 K =Tc; Right Figure (n-PE-NM): (◦), T=307.86 K; (5),
T=305.93 K; (M), T=303.98 K; (♦), T=303.03 K; (�), T=302.57 K; (H), T=301.70 K; (N),
T=301.41 K; (�), T= 301.30 K; (�), T=301.22 K; (•), T ≈ 300.97 K =Tc.

Due to effects of critical slowing down near the consolute point(xc,Tc) as well as the
dramatically increasing sound attenuation as shown in Fig.(5.13) in the case of the binary
systems (n-PE-NM) and (NE-3MP), only the high-frequency partf > 180 kHz of critical
contribution to the ultrasonic spectra is obtainable from ultrasonic spectrometry. Hence,
the verification of the characteristic relaxation rateΓ from the ultrasonic measurement
is quite difficult. In the Section ”Strategies of verifying scaling function” (Sec.5.1) it
has been argued that there is no difference between the characteristic relaxation rate ob-
tained from the dynamic light scattering and from the ultrasonic spectroscopy Eq.(5.1).
Therefore, the determination of the characteristic relaxation rateΓ0(ε) from dynamic light
scattering allows the reduced frequencyΩ = 2π/Γ0εZ0ν̃ to be calculated and to be used in
the calculations of the scaling function data.

5.5.1 Scaling functions

In a previous section it was supposed that the Bhattacharjee-Ferrell scaling function
FBF(Ω) fits best to the experimental ultrasonic measurement. In fact, this conclusion
can be drawn only, when the other theoretical scaling functions, which have been pro-
posed by Onuki or Folk and Moser (Section4.3) are also considered. For this reason the
experimental data have been evaluated with the aid of the quasi-universal empirical scal-
ing functionFx(Ω), Eq.(4.23). A graphical representation in addition to the experimental
data points for the systems (n-PE-NM) and (NE-3MP) of the three scaling functions for
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Figure 5.14: Ultrasonic attenuation spectrum in the formatα/ f 2 versus f of an (ET-
DOD) mixture at 25 oC. The mole fraction of alcohol isxe = 0.029, corresponding with
a mass fractionYe = 0.008. The line is the graph of a Debye-type relaxation function with
the following values of the parameters:AD = 0.54·10−3, τD = 19.1 ns,B = 79.2 ps (B

′
=

61.7·10−15s2m−1, cs = 1281.9ms−1).

(x = BF,FM,On in 4.23) is presented in Fig.(5.15). It is evident that the Onuki func-
tion is controlled by a half attenuation frequency that is distinctly larger than that of the
empirical Bhattacharjee-Ferrell function. The Folk-Moser theory predicts a slope sub-
stantially different from the one of the Bhattacharjee-Ferrell function. In order to inspect
the correspondence of the theoretical scaling function with the experimental facts more
closely, theF(Ω) data for (n-PE-NM) system and also for the (NE-3MP) system have
been fitted to relation Eq.(4.23), treatingnx and the half attenuation frequencyΩx

1/2 as
adjustable parameters. Results of those investigations are presented in [76]. In Fig.(5.15),
both series of measurements complement each other, showing that over a reduced fre-
quency range of eight decades theFBF(Ω) values fairly well fit to the scaling function
of Bhattacharjee and Ferrell. The literature data of (NE-3MP) are closer to the value of
F(Ω) = 1, caused by the higher upper limit of the measurement frequency range (f ≤ 17
MHz) as well as of the smaller than with (n-PE-NM) amplitude in the characteristic rela-
xation rate,Γ0 = 123·109s−1. Consequently, the (NE-3MP) data extend to higher values
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5.5 Ultrasonic spectrometry

Figure 5.15: Scaling function data for the (n-PE-NM) mixture of critical composition,
(�), and for the critical system (NE-3MP), (◦): The line is the graph of the empirical
Bhattacharjee-Ferrell scaling function. The scaling function according to Onuki is shown by
the dashed line, and that of the Folk-Moser by the dotted line. Also included are literature
data [85].

of the reduced frequencyΩ = 2π/Γ(ε). However, the central parameter in the empirical
scaling function is the half attenuation frequencyΩ1/2. This parameter can be derived
from a regression analysis of experimentalF(Ω) data in terms of the theoretical scaling
functionsFx(Ω). This quantity can be used as an additional prove of the applicability of a
scaling function. According to Eq.(4.24), a sensitive inspection of the shape of the three
empirical functions(x = BF,FM,On) can be provided. In Fig.(5.16) the half attenua-
tion frequencyΩBF

1/2, as following from Eq.(4.24) for the Bhattacharjee-Ferrell empirical
scaling function versus scaled frequencyΩ is plotted for two other critical mixtures. In
Fig.(5.17) the same plots as in Fig.(5.16) but for the Folk-Moser, and the Onuki func-
tions are shown. The overall increase in theΩFM

1/2 values from 1 atΩ = 0.1 to about 5 at
Ω = 4000 may be taken as an indication that both examples of critical mixtures (ET-DOD)
as well as (ME-CH) do not fit as well to the shape of Folk-Moser scaling function as to
that of the Bhattacharjee-Ferrell and the Onuki function. However, use of the parameter
nOn in Eq.(4.24), yields values around 2, at variance withΩOn

1/2 = 6.2. This result again
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Figure 5.16: Half-attenuation frequency Ωx
1/2 for the Bhattacharjee-Ferrell empirical

scaling function (x = BF) plotted versus scaled frequency:(◦) data for the system (ET-
DOD). (�) refers to (ME-CH) mixture of critical composition.

confirms the conclusion that the Bhattacharjee-Ferrell scaling function applies best to the
experimental data. Results for most binary critical systems measured in present thesis
indicateΩBF

1/2 = 2.1±0.1. This value is in nice agreement with the theoretical prediction
of Bhattacharjee and Ferrell. For the system (n-PE-NM) the half-attenuation frequencies
are somewhat smaller(ΩBF

1/2 = 1.8). Previous investigations of the system (ET-DOD) had

revealed a value(ΩBF
1/2 = 1.2) [89]. However, if effects of hydrodynamic coupling are

taken into accountΩBF
1/2 = 2.1 follows [99].

Another binary liquid, which has been studied within the series of mixtures without ad-
ditional noncritical relaxation, was the system (NE-CH). This critical mixture, however,
reveals an anomaly in the critical amplitudeSBF Eq.(4.17) and in the adiabatic coupling
constantg. As was mentioned previously, the assumption of the independency from tem-
perature not fulfilled with these systems. If the critical amplitude is assumed constant, the
data show systematic deviations from the theoreticalFBF function in a way that most of
them seem to be shifted to lower reduced frequencyΩ (Fig.(5.18)). Since, the more recent
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Figure 5.17: Left Figure: Half-attenuation frequency as in Fig.(5.16) but for the Folk-Moser
scaling function(x = FM). The dotted line represents the theoretical valueΩFM

1/2 = 3.1.;
Right Figure: Same plot but for the Onuki scaling function(x = On) with the theoretical
valueΩOn

1/2 = 6.2.

Figure 5.18: Scaling function data for the(NE-CH) system, with amplitude fixed at con-
stant value: Figure symbols indicate different temperatures of measurement.

Folk-Moser and Onuki scaling functions are controlled by even larger half-attenuation fre-
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quencies, the discrepancy between experimental data and those functions would even be
greater. When the amplitude is an adjustable parameter the experimental data fit nicely
to the Bhattacharjee-Ferrell function withΩBF

1/2 = 2.1 Fig.(5.18). Due to this fitting pro-
cedure, the critical amplitudeSBF as well as the adiabatic coupling constantg display a
temperature dependence. This behavior of the critical amplitude contrasts other inves-
tigated systems without and with one additional chemical relaxations. The ultrasonic

Figure 5.19: The same scaling function data as in Fig.(5.18), but with adjustable critical
amplitude SBF. All temperatures of Fig.(5.18) are represented by one symbol (◦) and that
from literature [84] by (�).

attenuation data in Fig.(5.18) and Fig.(5.19) have been completed by literature data [84].
Both series of experimental scaling function data nicely complement each other, showing
that, over a large reduce frequency range theF(Ω) values fairly fit to the Bhattacharjee-
Ferrell scaling function, when the critical amplitude is considered an adjustable parameter.

Serious problems in the verification of the Bhattacharjee and Ferrell scaling function have
appeared with the systems of (ME-HEX) and (ET-DOD). Firstly, these systems have been
assumed to do not reveal a chemical relaxation. Hence, the first evaluation of experimen-
tal data have been considered from this point of view. As mentioned, however, in the
previous section about ultrasonic measurements, an additional relaxation term has been
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Figure 5.20: Scaling function dataFBF of the binary mixture (ET-DOD) of critical con-
tribution: without taken into account of the additional noncritical contribution.

found in both mixtures, with consequences for the data evaluation. In Fig.(5.20) the scal-
ing function (ET-DOD) data, following on the assumption of a system without additional
chemical relaxation are displayed. These data, follow the general trends in the scaling
function but show systematic deviations and a large scatter. Moreover, the critical am-
plitude SBF as adjustable parameter similar to (NE-CH) demonstrates a dependence on
temperature. However, taking into account the existence of an additional Debye-type re-
laxation term and considering its contribution to the low frequency wing in the spectra
f < 1.7MHz according to Eq.(4.26), leads to an excellent agreement of the experimen-
tal scaling function with the theoretical form of the Bhattacharjee-Ferrell model. It also
leads to independency of the critical amplitude on temperature. The same procedure has
been successfully performed with the binary mixture (ME-HEX) [93] as well as with the
system perfluoromethylcyclohexane-carbon tetrachloride [100]. Unfortunately, although
recently performed measurements on a (NE-CH) mixture of noncritical composition point
at an additional chemical relaxation. The unusual behavior of the critical amplitude of that
system is still not clear.
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Figure 5.21: Same scaling function plot as in Fig.(5.20): but taking an additional Debye
term into account Eq.(4.26).

5.5.2 Amplitude SBF and coupling constant g

The discussion of the quantities like the critical amplitudeSBF as well as the coupling
constant is interesting, because of their direct connection to thermodynamics. Further-
more, if heat capacity data as well as the fluctuation correlation length amplitudesξ0 are
available, comparison of the amplitude valuesSBF and of the coupling constantg from
ultrasonic measurements with results from thermodynamic calculations is possible. From
the amplitude parameter,A(T), of the critical part in the ultrasonic spectra, the amplitude
SBF can be derived, which according to Eq.(4.17) is related to the adiabatic coupling con-
stant,g. The determination of the coupling constant will be presented using (ME-HEX)
as an example.

Eq.(4.17) can be rewritten to yield the coupling constantg as a function ofSBF:

g =
Cpb

π

[
2TcSBF

δCpccs(Tc)

]1/2
[

2π
Ω1/2Γ0

]δ/2

. (5.15)
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In this example the value of the critical amplitudeSBF can be derived from the ultrasonic
attenuation spectroscopy, using the expression:

(α/ f 2)(Tc) = SBF f−1.06+(α/ f 2)bg. (5.16)

According to Eq.(5.16), the plot of the frequency normalized attenuation coefficient data
versusf−1.06 at low frequencies and at the reduced temperatureε = 1.6 ·10−5 define a
straight line with slopeSBF = (0.88±0.02) ·10−6s−0.94m−1 (see Fig.(4.1)). In Eq.(5.15)
Cpb as well asCpc are the background part and the amplitude of the singular part, re-
spectively, of the heat capacity at constant pressure, if it is simply represented by the
equation Eq.(5.4). Using D = 0 andE = 0 nearTc, Cpc = A+/(α0ρ(Tc)) = 102.2 J
/ (kgK), andCpb = 2.34 kJ / (kgK) follows from the parameters of Eq.(5.4), where
ρ(Tc) = 0.6841 g/cm3. With cs(Tc) = 1005.57 m/s andΓ0 = 44× 109 s−1, as men-
tioned before,g= 0.11±0.01 follows from the amplitudeSBF of the Bhattacharjee-Ferrell
model. The adiabatic coupling constant can be alternatively derived from thermodynamic
quantities, using Eq.(4.18). ThereindTc/dp is the pressure dependence of the critical
temperature along the critical line andαp is the thermal expansion coefficient at constant
pressure at the critical point. The thermal expansion coefficient can be derived from the
density data for the mixture of critical composition, following Eq.(4.19). The density data
for the (ME-HEX) mixture, can be represented by the relation

ρ = ρc +c1ε+c2ε1−αo (5.17)

with ρc = (0.68412±0.00001) g/cm3, c1 = −(0.321±0.003) g/cm3, andc2 = 0. With
αc

p = (1.35± 0.1)× 10−3 K−1 from this equation anddTc/dp = (32± 1)×10−3 K/bar
[94] or dTc/dp = (33.8± 1.2)× 10−3K/bar [95] g = 0.12± 0.05 results, in agreement
with g = 0.11±0.01 from the sonic attenuation coefficient measurements. In most sys-
tems which have been investigated in the present work the amplitudeSBF shows only a
weak dependence on frequency and temperature. Furthermore, from ultrasonic studies on
systems without additional chemical relaxations the values obtained for the critical am-
plitude are in nice agreement with the results from thermodynamic calculations. For the
binary critical systems listed in Table (5.9), |g| values between 0.33 (n-PE-NM), and 0.26
(NE-3MP) have been found. These values are small if compared to|g| = 0.7 [96] and
|g|= 0.98 [97] as reported for the triethylamine/water critical mixture or to|g|= 1.3 [98]
and |g| = 2.1 [101] as found for the critical systems ethylammonium nitrate/n-octanol
and isobutyric acid/water, respectively. The system with unusual amplitude,SBF, and
coupling constant is the critical mixture (NE-CH), as already mentioned before. TheSBF

values, obtained from fitting the experimental ultrasonic spectra to Eq.(5.14), display a
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.22: Left Figure: Amplitude SBF of the critical term in the ultrasonic attenuation
spectra of the (NE-CH) system displayed as a function of temperature. The line is the graph of
the theoretical relation Eq.(4.17) with the parameter values given in the text.;Right Figure:
Amount|g| of the adiabatic coupling constant of the (NE-CH) mixture of critical composition
as a function of temperatureT.

weak dependence upon temperature as shown by Fig.(5.22). This temperature depen-
dence can be found in theoretical expression Eq.(4.16) if temperature dependencies in
Eq.(5.4), whereCpb = E+ε +B+, and in the thermal expansion coefficient Eq.(4.19) are
considered. With the aid of heat capacity data from the literature [79] and with thermal
expansion coefficient as resulted from density measurements the agreement between tem-
perature dependencies from theory and experiment is striking. The calculated coupling
constant following from the fitting procedure in Fig.(5.22) shows a strong temperature be-
havior, too. It increases from|g|= 0.064 near the critical pointTc to |g|= 0.1 atε = 0.01.
Hence, the temperature variation inSBF is obviously due to a temperature dependence
of the adiabatic coupling constant which results from a predominance of the temperature
dependent thermal expansion coefficient ing. If this effect is disregarded the scaling func-
tion data from different runs do not fit to the Bhattacharjee-Ferrel scaling function, as was
demonstrated in Fig.(5.18).

5.6 Systems with complex background
contributions

As was mentioned in the Introduction, another aim of the investigations of critical binary
systems with the aid of ultrasonic spectroscopy is to study the coupling between chemical
relaxations and critical fluctuations in more complex systems. Especially, acoustic fields
couple to the spatial Fourier components of the fluctuations, caused by their periodic vari-
ations of temperature. Hence, the question is whether the assumption of the additivity of
critical contributions and the background contributions including noncritical relaxations,
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is correct. In this context three additional systems has been studied, isobutoxyethanol-
water, 2,6-dimethylpyridine-water and triethylamine-water.

5.6.1 Isobutoxyethanol-water

Ultrasonic attenuation spectra of the isobutyric acid-water mixture of critical composi-
tion, reveal significant effects of slowing down near the critical temperature [101] not
just in the monomer/linear dimer equilibrium of the carboxylic acid, but also in the linear
dimer/cyclic dimer equilibrium, the latter being essentially an unimolecular process. The
isobutoxyethanol-water mixture belongs to the class of micellar systems of non-ionic sur-
factants. In the past, conflicting results have been reported for this systems, namely, non-
universal near-critical demixing properties and also universal behavior [102], [103], [104],
[105]. Recent broadband ultrasonic studies of a variety of CiEi /water systems [106], [107]
suggested the idea of a fluctuation controlled monomer exchange [108], [109]. From
the critical micelle mass fractionsYcmc of higher CiEi homologues the critical micelle
mass fractionYcmc = 0.07 has been extrapolated for the system isobutoxyethanol/water
(i−C4E1/H2O), corresponding with a critical micelle concentrationcmc= 0.6 mol/l at
room temperature [108], [109]. The cmcof this short- chain amphiphile is, of course,
not a sharply defined concentration but characterizes a transition range from predomi-
nantly molecularly dispersed solutions to mixtures containing micellar structures. For
the system (i−C4E1/H2O) this transition regime is located well below the lower critical
demixing mass fraction:Yc = 0.318 [117] andYc = 0.330 [110] have been found, accord-
ing to the equal-volume criterion. The critical temperature was determined visually as
well as from measurements of half-power bandwith of an acoustical resonance at 4000
kHz of a biplanar resonator, Fig.(5.23), and wasTc = 298.10 K. This value is smaller than
the critical temperature in previous experimental studies,Tc = 299.60 K [117]. Hence mi-
celles and concentration fluctuations exist simultaneously near the critical demixing point.
The question whether or not the fluctuations in the local concentration interfere with the
micelle formation/decay kinetics has not been answered so far [111]. A broadband ultra-
sonic spectrometry study of the (i−C4E1/H2O) system has been performed recently [110]
in order to investigate the aggregation kinetics as well as the critical dynamics at the lower
demixing point.
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.23: Half-power bandwidth ∆ fr of an acoustical resonance at 4000 kHz of a
cylindrical biplanar resonator filled with the ( i−C4E1/H2O) mixture of critical compo-
sition, plotted versus reduced temperatureε.

Figure 5.24: Relaxation rate
ΓDLS, (◦), and non-universal be-
havior of ΓUS, (•), near critical
point.

The relaxation rateΓ of concentration fluc-
tuations, derived from the critical contribu-
tion to the ultrasonic spectra, did not follow
power law Fig.(5.24) as did theΓ values from
static and dynamic light scattering [112]. There-
fore, additional measurements of low frequency
part of the ultrasonic spectra have been per-
formed between 200 kHz and 3 MHz and have
been evaluated on the assumption that the re-
laxation rate of critical fluctuations in ultra-
sonic spectra is governed by the relaxation
rateΓDLS from the dynamic light scattering.
An example of an ultrasonic excess attenua-
tion spectrum of the (i−C4E1/H2O) mixture of critical composition at 25oC is displayed
in Fig.(5.25). A careful analysis of the broadband sonic (i−C4E1/H2O) spectra atYc lead
to the conclusion that at least three relaxation terms,

(αλ)∗exc= Rc( f )+R#
H( f )+RD( f ) (5.18)
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Figure 5.25: Acoustical attenuation-per-wavelength spectrum for (i−C4E1/H2O) mix-
ture of critical composition at 25 oC. The subdivision follows from nonlinear least-squares
regression analysis of the experimental spectrum of terms of Eqs.(5.18) and (3.31).

are required for an adequate analytical representation of the experimental data [110]. In
addition to a broad critical contributionRc( f ) Eq.(4.16), a restricted Hill-typeR#

H( f )
Eq.(3.39), and a Debye-typeRD( f ), Eq.(3.32), relaxations are indicated by relative max-
ima in the spectrum, Fig.(5.25). Here the restricted Hill term reflects the micelle formation
and decay kinetics [113]. The additional contribution represented by the Debye term ex-
ists already ini−C4E1 without water added. It seems to reflect a chemical equilibrium of
i−C4E1 molecules, likely a step in the isobutoxyethanol isomerization scheme. Informa-
tion about the spectrum has been achieved from broadband measurements at noncritical
mixtures with 0.09≤ Y < 1 in [113]. This complicated spectrum requires a special re-
gression analysis. In order to reduce the number of adjustable parameters, ones more,
the critical relaxation rateΓ(ε) from light scattering has been used as known parame-
ter in the regression analysis of the spectra. Furthermore, in the fitting procedure of the
low-frequency measurements (inset of Fig.(5.26)) between 200 kHz and 3 MHz the pa-
rameters of the Hill and Debye relaxation terms have been obtained by interpolation and
extrapolation from previous data [110]. Therefore, in determining the scaling function
F(Ω) (Fig.5.26), the only adjustable parameter in the data evaluation was the critical
amplitudeSBF. As result, the temperature dependence inSBF, as follows from the fit-
ting procedure of the attenuation coefficient data in terms of the Bhattacharjee-Ferrell
scaling function, is almost as large as for the (NE-CH) system. According to Eq.(5.15),
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.26: Scaling function data for the (i−C4E1/H2O system.)The line is the graph of
the of the Bhattacharjee-Ferrell scaling function Eq.(4.22) with Ω1/2 = 2.1. The inset shows
the low-frequency part of frequency normalized acoustical attenuation spectra. (•) 20.20oC,
(N) 23.64oC, (�) 24.95oC.

usingCpc = 55.45 J/kgK andCpb = 3740 J/kgK [114], theg values from the amplitudes
SBF decrease fromg = 1.77 atε = 0.0012 tog = 1.33 atε = 0.019. In contrast, almost
constantg = 1.35 results from the thermodynamic relation Eq.(4.18). In deriving this
valuedTc/dP= 39.8 ·10−3 K/bar [115] has been used andρ(Tc) = 0.9715 g/cm3 [110].
However, whenΓ(ε) is fixed and using coupling constantg from thermodynamical calcu-
lations, according to Eq.(5.15) allows for an excellent representation of the experimental
data on one master curve, as presented in Fig.(5.26).

5.6.2 2,6-dimethylpyridine-water

Another binary critical mixture which has been investigated in the framework of systems
with complex background contributions was 2,6-dimethylpyridine-water. The mixture
(2,6-DMP-H2O) displays a lower critical demixing point atTc = 306.83 K with critical
mass fractionYc = 0.291 of 2,6-DMP . Moreover, as 2,6-DMP is a weak base, protolysis
may take place in aqueous solutions:

2,6-DMP+H2O � 2,6-DMPH+ +OH−, (5.19)

and, by analogy with the stacking of cyclic purine bases, the formation of 2,6-DMP ag-
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gregates may be suggested [121]. A protolysis term also exists in the spectrum of the
mixture of noncritical composition (x = 0.148,τ1 = 2.7ns,A1 = 2.1·10−3, 25oC), shown
in Fig.(5.27).

Figure 5.27: Ultrasonic excess
attenuation spectrum for 2,6-
dimethylpyridine-water mixture
of noncritical composition Y =
0.148at 25 oC.

Dielectric and ultrasonic relaxation measure-
ment as well as depolarized Rayleigh scatter-
ing and nmr studies reported in [118], [119],
[120], have supported the idea of 2,6-DMP
aggregates including water. In the previous
treatment of (2,6-DMP-H2O) spectra [120] two
Debye-type relaxation terms have been con-
sidered in addition to the critical contribution.
The recent evaluation proved one noncritical
relaxation termRD( f ) to be sufficient for an
adequate representation of the experimental
data Fig.(5.28), which likely reflects the pro-
tolysis equilibrium Eq.(5.19). Hence, at least two relaxation terms,

(αλ)∗exc= Rc( f )+RD( f ) (5.20)

are required for an adequate analytical representation of the experimental data [123]. An-

Figure 5.28: Excess-attenuation-per-wavelength spectrum for the 2,6-dimethylpyridine-
water mixture of critical composition at 30 oC. Dashed and dotted lines are graphs of the
critical Rc( f ) and noncritical termsRD( f ), respectively, in the spectrum Eq.(5.20). The full
line shows the sum of these terms.
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.29: Shear viscosity data of 2,6-dimethylpyridine-water from capillary vis-
cosimeter measurements (•) and from the extrapolation of high-frequency viscosity data
(N): Also shown are the graphs of the viscosity function (full line) and of the noncritical
background part in the viscosity (dashed line).

other advantage of the (2,6-DMP-H2O) system is the availability of recent specific heat,
shear viscosity, and dynamic light scattering data [116], which facilitate the evaluation
of the critical part in the ultrasonic attenuation spectra. In Fig.(5.29) the shear viscos-
ity data are displayed along with the graph of Eq.(4.31) to show that the experimental
ηs values are well represented by theory. Also given by the dashed line is the graph
of the background partηbg. In addition to the shear viscosity data from the capillary
viscosimeter measurements, high-frequency viscosity data obtained from the impedance
spectrometer (Sec.(3.4) are presented in Fig.(5.29) [118]). The combined evaluation of
the high frequency shear viscosity and the dynamic light scattering data yields the back-
ground contributionηbg, in nice agreement with extrapolated high frequency viscosities
ηs(0) = lim f→0ηs( f ), measured between 5 and 120 MHz [116] where the critical contri-
bution are supposed to be fade out. This is another indication that the crossover formalism
describes data correctly.
Knowledge of the noncritical background contributionsRD( f ) = ADωτD/(1+ω2τ2

D)
Eq.(5.20) andB in Eq.(3.31) in the ultrasonic spectra allows the scaling functionF(Ω) to
be calculated without any adjustable parameter. Using the characteristic relaxation rate
Γ(ε) and the especially measured resonator data the (Eq.(5.14)) has been applied with
AD(T), τD1(T), andB(T) data as simply obtained by interpolation of the values given
in Table (5.4). The values for characteristic relaxation rate, viscosity parameter, as well
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Figure 5.30: Scaling function data for the 2,6-DMP/H2O mixture of critical composition
as determined using relaxation rates from the shear viscosity and dynamic light scatter-
ing measurements withΓ0 = 25·109s−1):. The line is the graph of the empirical scaling
function of the Bhattacharjee-Ferrell theory withΩ1/2 = 2.1).

as critical amplitude and the coupling constant can be found in Table (5.9). The scal-
ing function withΩ1/2 = 2.1 is presented in Fig.(5.30). The data, measured at different
frequencies and temperatures, clearly define one master curve and almost agree also with
the theoretically predicted function. This result, following from an evaluation without any
unknown parameter, may be taken to indicate the consistency of the theoretical models.

Tc−T K AD(10−3) τD (ns) B(ps)
±0.4 ±0.1 ±1

8.40 9.6 1.3 70.3
2.40 9.6 1.3 70.4
1.40 8.4 1.5 65.8
0.80 9.6 1.4 63.5
0.20 12.1 1.3 62.0
0.02 12.1 1.3 62.0

Table 5.4: Noncritical parameters in the ultrasonic spectra of the (2,6-DMP/H2O) mix-
ture of critical composition.
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5.6.3 Triethylamine-water

Figure 5.31: Low frequency part
of the ultrasonic spectra (TEA-
H2O) mixture of critical compo-
sition, (RUN2) 2: x, T=283.92 K;
♦, T=289.80 K;5, T=287.76 K;
�, T=289.79 K;•, T ≈ 291.36 K
= Tc.

Another system in the studies of critical mix-
tures with complex background contributions
was triethylamine-water (TEA-H2O). The crit-
ical mixture (TEA-H2O) had been investigated
in many previous studies with ultrasonic meth-
ods as well as with light scattering methods.
Unfortunately, in those studies [124], [125]
the scaling function data did not fall on one
curve, and additionally, the data deviated sub-
stantially from the theoretical form. Further-
more, the amplitude of the characteristic rela-
xation rate(Γ0 = 45· 109s−1) obtained from
ultrasonic measurements was distinctly smaller
than that obtained from light scattering data
and shear viscosity measurements(Γ0 = 96·
109s−1). Therefore, low frequency ultrasonic
measurements, Fig.(5.31) have been performed
at critical composition (the mass fraction of
amineYc = 0.321, critical temperatureTc =

18.21 oC ) and additionally, the shear viscosity data as well as the light scattering data
have been reevaluated within the framework of the crossover formalism. In Fig.(5.32), the
resulting plots of the characteristic relaxation rate and the shear viscosity are presented.
Furthermore, the measured viscosity as well as the derived mutual diffusion coefficient
have been compared with literature data [131] at 15 oC, Fig.(5.33). The diffusion co-
efficient versus mole fraction plot of (TEA-H2O) and the viscosity versus mole fraction
plot of (TEA-H2O), both agree nicely with literature data. In previous studies the ex-
perimental data, had not been treated in terms of modern crossover theories. Hence, the
investigation in the present thesis has been focused on the low frequency part Fig.(5.31)
of the ultrasonic spectra of (TEA-H2O) as well as the treatment of the data within the
framework of crossover formalism Eq.(4.31). Additionally, the noncritical contribution
to the ultrasonic spectra, and its coupling to the critical fluctuations has been studied ex-
tensively. More recent broadband ultrasonic attenuation spectrometry revealed two non-
critical background relaxation terms, in addition to the always existing asymptotic high
frequency background term [97]. In Fig.(5.34) the ultrasonic attenuation spectrum for the
(TEA-H2O) mixture of critical composition is displayed at 17oC and 15oC. The finding
of the broadband (TEA-H2O) spectra to be composed of different contributions is indi-
cated by dashed lines. Careful analysis of the experimental data [97] has revealed the
existence of two Debye type relaxation terms (R+

D1
, R+

D2
) in addition to the critical term
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Figure 5.32: Left Figure: Shear viscosityηs of the (TEA-H2O) mixture of critical com-
position versus temperatureT. The full line shows the viscosity function, the dashed line
represents the background partηbg; Right Figure: Relaxation rateΓ of order parameter fluc-
tuations of the (TEA-H2O) mixture of critical composition as a function of reduced temper-
atureε. Symbols represent data as obtained from the combined evaluation of shear viscosity
and dynamic light scattering results. The line is the graph of the power lawΓ = Γ0εZ0ν̃ with
the theoretical critical exponentZ0ν̃ = 1.903 and the amplitudeΓ0 = 96·109s−1.

Figure 5.33: Left Figure: Shear viscosityηs versus mole fraction of (TEA-H2O) at 15oC
Right Figure: Diffusion coefficientD versus mole fraction of (TEA-H2O) at 15oC, [131],
full symbols denote values from present work.

and the frequency independent contributionB
′
. Triethylamine is a strong base. The high

frequency Debye relaxation termR+
D1

has been assigned [97] to the protolysis reaction:

TEA+H2O � TEAH+ +OH−, (5.21)

with a relaxation time between 1 and 1.7 ns. The low-frequency Debye termR+
D2

has been
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Figure 5.34: Ultrasonic attenuation coefficient perf 2 versus frequencyf for the (TEA-
H2O) mixture of critical composition at 18.00 o� C, and 15.00oC ◦. The subdivi-
sion of the spectrum into a critical part (”Rc( f )”) and noncritical background contributions
(”B

′
”,” R+

D1
( f )”,” R+

D2
( f )”) is indicated by dashed and dotted lines. The full lines are in the

graph the complete spectral functions.

related to rotational isomerization of the ethyl groups:

TEA � TEA∗, (5.22)

with TEA∗ denoting a structural conformer of TEA. Rotational isomerization has been
assumed to be reflected by acoustical relaxation in pure triethylamine, [126], with rela-
xation time on the order of 2 ns. Both Debye relaxation terms have to been taken into
account in the evaluation of the scaling function. Assuming the Bhattacharjee-Ferrell
theory to apply to the critical partR+

c ( f ) in the sonic attenuation coefficient the ultra-
sonic spectra have been analytically represented by function Eq.(4.26) with the relaxation
rate(Γ0 = 96·109s−1) from light scattering and viscosity measurements, taking into ac-
count the crossover formalism. Assuming in the temperature range between 10.7oC and
Tc = 18.21 oC, the critical amplitudeSBF Eq.(4.17) to be independent of temperature, the
experimental scaling function data have been fitted to the empiricalFBF(Ω) function. In
this fitting procedure parametersAD1 andτD1 of the high frequency Debye term and the
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asymptotic high frequency background parameterB
′
as well as the relaxation rateΓ and

the critical amplitudeSBF have been fixed at values obtained by inter-and extrapolation
of data from the broadband spectra and from light scattering measurements [97], respec-
tively. Hence onlyτD2 andAD2 were adjusted to reach optimum agreement of scaling
function data with the analytical form Eq.(4.26). Three runs and previous data were in-
vestigated [97]. The result of the regression analysis is shown by Fig.(5.37). Since the
critical contribution resulted from subtraction of the noncritical parts from the total attenu-
ation, the scatter in theF(Ω) data is rather large. Within the limits of this scatter, however,
the data from different runs and different temperatures of measurement fall on one curve
and agree with the empirical scaling function according to Bhattacharjee-Ferrell formal-
ism, with Ω1/2 = 2.1. The finding of a longer relaxation time (14 ns≤ τD2 ≤ 26 ns) for
aqueous solutions in [97] than pure non-associating TEA may reflect the collective redis-
tribution of solvent molecules associated with the structural isomerization of the solute.
This effect has been also reported in [129] mixtures water-alcohol. However, from the

Figure 5.35: Relaxation time of structural isomerization of TEA versus temperature of
the noncritical system triethylamine-2- propanol [135].

regression analysis results that both Debye relaxation times increase withT, at variance
with Arrhenius or Eyring characteristics. An evaluation of the Eyring-Plot would produce
a negative activation enthalpy. This behavior, which has been reported in [127] and [128]
obviously is an indication of slowing down of chemical relaxations. This is an contro-
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versially discussed effect, which has been questioned by Milner and Martin [130] on the
one side and confirmed by Procaccia [127], [27], Gitterman [132] as well as Krichevskii
[134] and Wheeler [133] on the other side. Especially the low-frequency Debye term in
frequency range of critical fluctuation contributions, assumed to be due to a uni-molecular
reaction has to be considered with more details. According to the predictions by Proccacia
et al. such uni-molecular reactions should be unaffected by the critical fluctuations. An
example taken from literature [135] of a correct Arrhenius behavior of the non-aqueous
and noncritical system triethylamine-2-propanol is presented in Fig.(5.35). Investigations

Figure 5.36: Bilogarithmic plot of the relaxation time τD2 of the (TEA-H2O) system
versus reduced temperatureε: The line indicates the power law behavior, Eq.(5.23).

on that non-aqueous systems give once more an indication that collective redistribution
of solvent molecules associated with structural isomerization of TEA in aqueous solution
(TEA-H2O) is the reason for the classic1 enlargement of relaxation times. Nevertheless,
the (TEA-H2O) critical ultrasonic data condense on a master curve if slowing down of
this reaction is allowed Fig.(5.37). Moreover, according to the expression [128]:

τDn = τD0,nε−ψ, (5.23)

1classic, means not critical effects
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the temperature dependence of the low-frequency term (n = 2 in Eq.(5.23)), within the
limits of experimental error, can be represent by a power law. Applying the relation de-
fined by Eq.(5.23) yieldsτD0,2 = 31.19 ns andψ = 0.17±0.04. This value of the critical
exponent is in fair agreement with that from the system isobutyric acid-water [128], where
Kaatze at al. obtained the exponentsψ = 0.2±0.05 andψ = 0.3±0.2. In Fig.(5.36) a
bilogarithmic plot ofτD2 as a function of reduced temperatureε is given. The unusual

Figure 5.37: Scaling function data for the (TEA-H2O) system as calculated from runs
special low frequency measurements and from previous broadband spectrometry [97]
are indicated by figure symbols.(run 1 (•), run 2 (N), run 3 (H), previous (◦)) The line is
the graph of the empirical form of the Bhattacharjee-Ferrell scaling function.

coupling of the rotational isomerization to the critical fluctuations reflected thereby may
be also be explained within the framework of the afore mentioned redistribution of solvent
molecules associated with structural isomerization of TEA with water. More detailed, the
ethylene groups parts of TEA are surrounded by cages of water molecules. The H-bond
network of water molecules will fluctuated slower in these cages (”hydrophobic hydra-
tion”), which results in a higher viscosity. The Debye-Stokes-Einstein model, which pre-
dicts a linear relation between the rotational diffusion time of a solute molecule,τrot and
viscosityηs, may give an explanation for such effect:

τrot =
Vηs

kBT
, (5.24)

whereV denotes the effective molecular volume. Unfortunately, the shear viscosity data
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in Fig.(5.32) do not exactly confirmed this hypothesis. The shear viscosity data increase
close to the consolute point in the range of absolute temperatureT−Tc = 0.5 K, but the
relaxation time data of the low-frequency term in the range of 7 K. Furthermore, the vis-
cosity of the (TEA-H2O) mixture of critical composition varies nearTc asηs = η0ε−0.04

only. Hence, the power law behavior in the relaxation time of theR+
D2

( f ) process cannot
be solely due to effects of viscosity. There must exist an intrinsic mechanism that slows
down near the critical demixing point. On the contrary, due to the exponentν∗ = 0.664
in the power law behavior of the mutual diffusion coefficient, it appears to be likely that
the rotational isomerization is largely governed by the critical slowing of the mutual dif-
fusion,D(ε)→ 0.

The non-Arrhenius behavior of the ultrasonic relaxation times associated with the pro-
tolysis (Eq.(5.19)) may also be taken to indicate slowing down of the chemical reactions
near the critical point. Proccacia et al. have predicted effects of slowing of such reactions
in which both constituents of a binary fluid participate. In Fig.(5.38) the relaxation time
τD1 of reaction (5.19) is represented by Eq.(5.23) with τD0,1 = 3.77 and with the critical
exponentψ = 0.07±0.01. In a binary mixture, there are two kinds of diffusion coeffi-

Figure 5.38: Bilogarithmic plot of the relaxation time τD1 of the (TEA-H2O) system
versus reduced temperatureε: The line indicates the power law behavior, Eq.(5.23).
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Figure 5.39: Relaxation time of the low frequency relaxation term of (TEA-H2O) versus
mole fraction of TEA. ((◦) 10 oC, (�) 15 oC, (♦) 17 oC); Results from reevaluation of
literature data [138].

cients: self-and mutual diffusion coefficients. The self-diffusion coefficient describes the
mobility of individual molecule in the mixtures and it is defined for each component in
a mixture. In [137], it was reported that the mutual diffusion coefficient is a collective
property, which controls the mixing of the two components of a binary liquid. The pro-
tolysis reaction belongs to the types of reactions that are governed by the self diffusion
coefficient. Smoluchowski has presented a relation between the forward (or backward)
rate constantkdi f f , controlled by the self diffusion coefficientDA of componentsA and
DB of componentB:

kdi f f = const.rAB(DA +DB), (5.25)

whererAB = rA + rB denotes the minimal distance of interaction. The coupling between
the self diffusion and mutual diffusion has been discussed in the literature [137] in the
case of the system ethanol-water. According to that coupling, the mutual diffusion coeffi-
cient can be expressed as:
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D = Q

(xADB +xBDA)︸ ︷︷ ︸
L0

−xAxB

(
fAA

x2
A

+
fBB

x2
B

−2
fAB

xAxB

) , (5.26)

whereL0 denotes the self diffusion coefficient, with the mole fraction of componentsA, B,
xA,xB and the cross correlation functions andfAB and the auto correlation functionsfAA,
fBB. Q is a thermodynamic factor. However, an analytical calculations of the self diffusion
coefficients of the system (TEA-H2O) are not possible, owning to the nonavailability of
the velocity cross correlation functions of the solution.
In order to verify the presented results, additional literature data [138] of concentration-
dependent broad band ultrasonic have been reevaluated. The results of the low frequency
term, relaxation timeτD2 versus mole fraction of TEA, are displayed in Fig.(5.39). The
values are somewhat lager than previous data. Unfortunately, no information on the purity
of TEA used in [138] is given. Furthermore, the critical temperature with (Tc = 17.6 oC) is
somewhat smaller than then one of this thesis (Tc = 18.21oC). Nevertheless, qualitatively
this result shows that critical slowing down of chemical relaxation occurs also in that
process.

5.7 Ternary system
nitroethane-3-methylpentane-cyclohexane

The investigations on binary systems without complex contributions presented in Section
(5.3), have motivated to study of ternary mixtures within the framework of Bhattacharjee-
Ferrell theory as well as the crossover formalism. Especially, due to the availability of ex-
perimental data for the binary systems nitroethane-cyclohexane (NE-CH) and nitroethane-
3-methylpentane (NE-3MP), it is interesting to examine the nature of a critical ternary
mixture nitroethane-3-methylpentane-cyclohexane (NE-3MP-CH). The investigated ternary
mixture belongs to the phase diagrams of type 2a (Sec.(2.4.2)). The aim of this study, in
addition to the verification of the dynamic scaling hypothesis, is to compare the behavior
of critical values in dependence of the concentration of the additional third component.
Therefore, a careful investigation of the ternary phase diagram was performed, to verify
the location of the plait line as well as of the col point. In present thesis the solvent (3MP)
plays the role of the additional third component. The significant plait points of investiga-
tions are shown in Fig.(5.40) and the corresponding values are listed in Table (5.6) or in
Table (5.5), respectively. The procedure of determination of the plait point line is based on
the same procedure as for binary mixtures, namely the equal volume criterion. The studies
in this thesis focused on the binary mixtures (NE-CH), (NE-3MP) as presented in Section
(5.3), as well as on the ternary mixtures with the composition of non-col pointsα′, α′′,
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mixtures 3-methylpentane cyclohexane nitroethaneTc
oC

compositions (weight fraction)
(NE-CH) 0.000 0.576 0.424 23.66
n.col(NE-3M-CYC)α′ 0.082 0.488 0.430 22.43
col (NE-3M-CYC) 0.200 0.360 0.440 21.33
n.col (NE-3M-CYC)α′′ 0.300 0.260 0.440 22.45
(NE-3MP) 0.534 0.000 0.466 26.44

Table 5.5: Critical parameters of the mixtures investigated.

Figure 5.40: The plait point line as a function of critical (3MP) content, from the binary
system (NE-CH) to (NE-3MP): ◦ denote plait points, including the col point (see Tables
(5.5) and (5.6)).

and with the col(or saddle)-point composition. The critical compositions and critical tem-
peratures are presented in Table (5.5). The ternary mixtures had a constant weight fraction
relationship of (CH) and (NE), (w. f r.CH/w. f r.NE = const.). In Fig.(5.41) three plots of
density versus reduced temperature are presented. However, as was mentioned before in
Section (4.5), although the crossover theory has been developed for binary mixtures, the
ternary system (NE-3MP-CH) belongs to the same universality class for dynamical prop-
erties as the investigated binary fluids. Nevertheless, within the scope of investigation on
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Figure 5.41: Density plots of ternary mixtures:M, denotes theα′mixture,◦ the col mixture
and5 theα′′ mixture.

w.fr. of 3-MP Tc
oC w.fr. of 3-MP Tc

oC
0.000 23.66(NE−CH) 0.200 21.33col

0.056 22.78 0.207 21.33
0.082 22.43n.colα′ 0.218 21.34
0.100 22.14 0.234 21.38
0.134 21.80 0.255 21.60
0.157 21.53 0.282 21.94
0.179 21.36 0.300 22.45n.colα′′

0.187 21.32 0.345 23.26
0.192 21.32 0.400 25.00
0.198 21.32 0.490 26.44(3MP−CH)

Table 5.6: Parameters of critical points in dependence of weight fraction (w f) of (3MP)
from Fig.(5.40).

ternary mixture, much attention has been directed on the behavior of the crossover effects
in the data evaluation of ternary mixtures. Especially, the dependence of cut-off wave
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numbersqc andqD on the background viscosityηbg has been studied with more details
as in the case of binary fluids. The measurements of viscosity, light scattering as well as
ultrasonic attenuation have been performed with the same instrumental setup as for the
other critical mixtures with the critical parameters of the mixtures in Table (5.5).

5.7.1 Crossover studies of viscosity and light scattering

In order to determine the dependence of the cut-off wave numbersqc andqD from the
background viscosityηbg, parametersAη, Bη and Tη the shear viscosity measurement
have been evaluated for each ternary mixture. In Table (5.7) the parameters from a si-
multaneous treatment ofηs andD data, taking crossover as well as background effects
in account, according to Eqs.(4.29), are presented. The plots of parameterAη, Bη andTη

weight fraction Aη±0.02 , Bη±200, Tη±20 ξ0±0.02, qc, qD±0.06, Γ0±2.5
of (3MP) ·10−6 Pas K K nm nm−1 nm−1 ·109 s−1

0.000 0.55 2537 -51 0.160 > 1000 0.55 156
0.082 0.59 2958 -134 0.195 4.40(10) 0.80 124
0.200 0.61 3174 -174 0.213 14.40(77) 0.60 102
0.300 0.50 2818 -111 0.209 12.89(68) 0.52 117
0.534 0.23 2877 -84 0.230 1.30(12) 0.32 125

Table 5.7: Parameters from shear viscosity and light scattering measurements in depen-
dence on the weight fraction of (3MP):the background viscosity was determined according
to Eqs.(4.29).

versus the weight fraction of (3-MP) are presented in Fig.(5.42) and Fig.(5.43) according
to Table (5.7). It is interesting to see that quantityAη follows the inverse shape of the in
Fig.(5.40) shown plait point temperature in dependence on (3MP) concentration. On the
one hand similar situation can be observed in case of the parameterBη in the limits of
error. On the other hand, the quantityTη relates to the plait point plot in Fig.(5.40). The
central parameter the fluctuation correlation lengthξ0 within the framework of analysis of
shear viscosity and light scattering measurements is presented in Fig.(5.44). Within the
limit of errors, it demonstrates an increase, controlled by the weight fraction of (3MP).
Along with the graph of Eq.(5.9) the dependence of the correlation length amplitude upon
the scaled temperature is shown as bilogarithmic plot in Fig.(5.44) for each ternary as well
as binary mixture (Table (5.7)). The fluctuation correlation length plots follow power law
over significant range of reduced temperature. The amplitudeξ0, of the (NE-3MP) sys-
tem is significantly larger than that of the (NE-CH) system Table (5.7). This difference
in the fluctuation correlation length of similar binary mixtures is obviously a reflection of
their different shear viscosities, Fig.(5.45). This assumption is supported by the behavior
of the ξ0 values of the ternary mixturesα′, col andα′′, which are following of order of
weight fraction likewise the shear viscosityηs. In Fig.(5.47), the characteristic relaxation
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Figure 5.42: Plots of Table (5.7) resulted from the viscosity background determination with
the aid of Eqs.(4.29) and the crossover formalism versus weight fraction of (3MP), lines are
drawn to guide the eyes;Left Figure: plot of parameterAη; Right figure: plot of parameter
Bη.

Figure 5.43: Plots of Table (5.7) resulted from the viscosity background determination with
the aid of Eqs.(4.29) and the crossover formalism versus weight fraction of (3MP), lines are
drawn to guide the eyes;Left Figure: plot of parameterTη; Right figure: semilogarithmic
plot of the cut-off wave numberqc.

rate amplitudesΓ0 are displayed. The presented data correspond once more with the plait
point line in Fig.(5.40). Finally, the conclusion could be done, that in ternary mixtures of
type 2a, the col point corresponds with the smallest value of the characteristic relaxation
rateΓ0 between two corresponding binary mixtures. Figure (5.48) shows three relaxation
ratesΓ(ε), of order of fluctuations which according to Eq.(4.11) have been calculated
from the mutual diffusion coefficient Eq.(4.35) and the fluctuation correlation length of
the critical ternary systemsα′, col andα′′. The diffusion coefficient data exhibit system-
atic deviations from function Eq.(4.35). These deviations may result from the insufficient
temperature control (±0.03 K). Especially in the case of the ternary mixtureα′′ the relaxa-
tion rate data exhibit small deviations from the power-law behavior. However, the cut-off
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Figure 5.44: Plots of Table (5.7) resulted from the viscosity background determination, ac-
cording to Eqs.(4.29), lines are drawn to guide the eyes;Left Figure: plot of the cut-off wave
numberqD; Right figure: plot of the correlation length amplitudeξ0.

Figure 5.45: Shear viscosity plots versus reduced temperatureε: of (NE-CH),◦; α′, M;
col, ♦; α′′, 5; (NE-3MP),•.

wave numbers in Fig.(5.43) and Fig.(5.44) display an unexpected shape. Especially the
qc parameter with value> 1000 of the crossover functionH(ξ(ε),qc,qD) in the case of
(NE-CH) does not fit to the qualitative shape of the other values. Nevertheless, taken
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Figure 5.46: Semilogarithmic plots of mutual diffusion coefficient, according to
Eq.(4.35);Left Figure: ternary mixtureα′; Right figure: ternary mixtureα′′; Lower fig-
ure: ternary mixture at col point.

into account thatqc is one of the parameters which are controlling the overlap between
mean field and critical range, the unusual behavior corresponds with the anomaly of crit-
ical amplitude (see Sec.(5.5.2)) SBF in (NE-CH). However, this correspondence is only
an assumption. Another question which should be treated within framework of dynamic
light scattering is the behavior of critical exponents. The assumption has been made that
adding a third component to a binary critical mixture does not only alter the critical expo-
nents but also change or influence the correction to scaling. In fact, in literature this kind
of behavior has been reported [41] in the case of the ternary mixture aniline-cyclohexane-
p-xylene. In that work it was observed that, due to the existence of the third component,
an enlargement of the critical static and dynamic exponents results. In the present thesis,
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Figure 5.47: Plots of Table (5.7) resulted from the viscosity background determination, ac-
cording to Eqs.(4.29), of investigated binary and ternary mixtures;Left Figure: bilogarithmic
plot of the fluctuations correlation lengthξ0 versus reduced temperatureε, (NE-CH),◦; α′,
M; col, ♦; α′′, 5; (NE-3MP),• ; Right figure: the characteristic relaxation rateΓ0 versus
weight fraction of (3MP),lines are drawn to guide the eyes.

as mentioned before, owing to insufficient temperature control(±0.03 K) in comparison
with (±0.001 K) in [41], the determination of critical exponents was not possible. Hence,
critical exponents from theory, listed in Chapter 2, have been used. However, the results
in this section, support the critical exponents for binary mixtures.

5.7.2 Dynamic scaling function of a ternary mixture

Conflicting results have been reported for ternary systems with critical demixing point
with regard to decreasing of the magnitude of critical sound absorption as the number
of components is increased, [140]. On the one side, one of Mistura’s conclusions was
that in fact the experimental critical absorption decrease along the plait line between cor-
responding binary systems, on the other side D’Arrigo’s et al. reported a opposite case
in the ternary system methanol-nitrobenzene-iso-octane [139]. At frequenciesf between
200 kHz and 400 MHz the ultrasonic attenuation coefficientα of the mixture of the ternary
mixturesα′, col as well asα′′ has been measured using two different methods and four
specimen cells.

In the frequency range from 200 kHz to 400 MHz the ultrasonic spectra of the two tem-
peratures of the ternary system with the col point composition are displayed in frequency
normalized format in Fig.(5.49). At high frequency the(α/ f 2) data tend towards a fre-
quency independent value, representing the background contribution. However, the broad
band ultrasonic spectrum cannot be represented only by the critical contribution accord-
ing to Bhattacharjee-Ferrell theory and a frequency independentB′. The error in the data
from the regression analysis, exhibits some systematic deviation. Therefore, additional
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Figure 5.48: Plots of relaxation rate of fluctuationsΓ(ε); Left Figure: ternary mixtureα′;
Right figure: ternary mixtureα′′; Lower figure: ternary mixture at col point.

ultrasonic measurement of non critical composition of mixtures (NE-CH) and (NE-3MP),
with 2.5 % of (NE) at the three temperatures 20oC, 25oC and 30oC have been performed,
in order to identify an additional relaxation process. Debye relaxation processR+

D( f ) in
the nanosecond range has been found. Unfortunately, concerning this Debye relaxation
term, no information could be found in the literature. An assumption is, that the relaxa-
tion term reflects an association process of (NE) similar to that of methanol in hexane,
[93]. The investigated ultrasonic attenuation spectra of the non-col point mixturesα′ and
α′′ display the same characteristic, Fig.(5.50). In order to determine the lower part of
ultrasonic spectra, where the critical contributions predominates at temperatures between
30 oC and theTc of α′, col, α′′, two runs for every mixture have been performed in fre-
quency range between 100 kHz and 7 MHz. In Fig.(5.51), the excess attenuation spectra
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5.7 Ternary system nitroethane-3-methylpentane-cyclohexane

Figure 5.49: Frequency normalized ultrasonic attenuation spectra of the ternary mix-
ture of col point composition:◦ correspond to data close to consolute point' Tc, and�
represent ultrasonic data at temperature 23oC.

of the binary as well as ternary mixtures of critical composition are displayed close to the
consolute point. With respect to the main results of Mistura and D’Arrigo [139], [140],
another conclusions has to be drawn in the case of the ternary mixture (NE-3MP-CH).
The sound attenuation does not change in dependence on the number of components. The
low frequency ultrasonic data displayed in Fig.(5.51) rather follow the behavior of the
fluctuation correlation lengthξ0 amplitude (small right plot in Fig.(5.51)). According to
the Bhattacharjee-Ferrell dynamic scaling model the low frequency ultrasonic measure-
ments, with the relaxation rate from dynamic light scattering have been evaluated for the
α′, the col point and theα′′ ternary mixtures, with the critical amplitudeSBF as the only
adjustable parameter, according to Eq.(4.26), with respect to the Debye relaxation term.
The data nicely fit to the empirical scaling functionFBF, Fig.(5.52). The scaling function
data in the case of the ternary mixtureα′′ exhibits a remarkable scatter, due measurement
problems, caused by rather high sound attenuation. Within the limits of this scatter, how-
ever, the data from different runs and different temperatures of measurement fall on one
curve and agree with the empirical scaling function. Unfortunately, the critical amplitude
in all three mixtures demonstrates a dependence on temperature, with smaller magnitude
but similar to that of the binary system (NE-CH). However, the additional relaxation con-

113



5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.50: Frequency normalized ultrasonic attenuation spectra of the ternaryα′, M,
and α′′, 5mixtures at 25 oC.

Figure 5.51: Left Figure: plots of low frequency part of the frequency normalized ultrasonic
spectra of the binary mixtures (NE-CH),◦ and (NE-3MP),• as well as of the ternary mixtures
α, M, col point♦ andα′′, 5 at critical temperatureTc ; Right figure: re-plot of Fig.(5.44) of
the fluctuation correlation functionξ0 versus the concentration in weight fraction of (3MP).
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Figure 5.52: Scaling function plots according to the Bhattacharjee-Ferrell theory, with
Ω1/2 = 2.1; Left Figure: ternary mixtureα′; Right figure: ternary mixtureα′′; Lower
figure: ternary mixture at the col point. Open symbols denote run 1 and full symbols run 2.

tribution, represented by the Debye-term, did not impose a significant influence on this
behavior. In the range ofε ≥ 0.04 the values ofSBF are constant in a large reduced tem-
perature range and displayed some kind of ”background behavior”,Sbg

BF, Fig.(5.53). In the

critical mixtureα′ Sbg
BF ' 0.85·10−5s0.94m−1, at the col pointSbg

BF ' 1.39·10−5s0.94m−1

and forα′′ Sbg
BF ' 1.20· 10−5s0.94m−1. In comparison, with the binary critical mixture

(NE-CH), Sbg
BF ' 0.8 · 10−5s0.94m−1 and with the system (NE-3MP) the largest critical

amplitude,Sbg
BF ' 3.02·10−5s0.94m−1 emerges. As mentioned before, the behavior of the

sound attenuation corresponds with the shape of the fluctuation correlation length versus
the weight fraction of (3MP). A question is whether there is some corresponding relation
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Figure 5.53: Left Figure: Plot of critical amplitudesSBF of three ternary mixturesα′, M col
point♦ andα′′, 5 versus reduced temperatureε ; Right figure: Plot of the critical amplitude
SBF versus the fluctuation correlation length, the exponential function line is drawn to guide
the eyes.

weight fraction ρ, cs, Cpb, Cpc, Sc
BF ·10−5, Sbg

BF ·10−5, |g|bg |g|c
of (3MP) kg·m−3 m·s−1 J·g−1·K−1 J·g−1·K−1 s0.94m−1 s0.94m−1

0.000 864.5 1238 1.77 6.24 0.57 0.80 0.10 0.07
0.082 869.8 1240 1.81 3.33 0.82 0.85 0.12 0.11
0.200 840.4 1215 1.82 2.55 1.25 1.39 0.17 0.16
0.300 821.2 1187 1.90 2.70 0.85 1.20 0.16 0.13
0.534 791.2 1098 1.99 2.03 2.90 2.90 0.26 0.26

Table 5.8: Densitiesρ, sound velocitiescs, background Cpb and critical Cpc heat capac-
ities at constant pressure, as well as backgroundSbg

BF and Sc
BF critical amplitudes and

background gbg and critical gc coupling constants in dependence on the weight fraction
of (3MP): background partCpb has been calculated with the aid of Eq.(5.27).

between the critical amplitudeSbg
BF and the fluctuation correlation length, too. In fact, the

plot in Fig.(5.53) demonstrates an interesting dependence of the critical amplitude and
the fluctuation correlation length in the case of both binary systems and the correspond-
ing ternary mixtures. This is a usual behavior, when considering the two-scale factor
universality relation, which relates the fluctuation correlation lengthξ0 to the critical heat
capacityCpc amplitude. The critical heat capacity amplitude is a substantial quantity in
the expression for the critical amplitude Eq.(4.17). Unfortunately, no heat-capacity data
are available for the critical ternary mixtures. However, the amplitude of the singular part
of heat capacity can be derived from the amplitude of the fluctuation correlation lengthξ0

using the two-scale factor universality relation. Moreover, the background partCpb of the
heat capacity of the ternary mixture, within an error less then 5 %, can be approximated
assuming an ideal mixing behavior:
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Figure 5.54: Left Figure: Plot of coupling constant|g| versus weight fraction of (3MP);
Right figure: Plot of coupling constant|g| versus fluctuation correlation lengthξ0; •, |g|
derived fromSbg

BF; �, |g| derived fromSc
BF.

CNE−3MP−CH
pb = CNE

pb xNE
c +CCH

pb xCH
c +C3MP

pb x3MP
c , (5.27)

wherexn
c(n = NE,3MP,CH) is the mole fraction of each component andCpb denotes the

background part of the heat capacity. Values for the pure components have been taken
from literature [141]. Because of the temperature dependence in the critical amplitude in
the ultrasonic spectra, two different critical amplitudes have been used in order to verify
the coupling constantg. The critical amplitude at the critical pointSc

BF and the critical

amplitude from the backgroundSbg
BF which are nearly identical. The evaluated parameters

are presented in Table (5.8). The behavior of the coupling constant follows again the
shape of the fluctuation correlation length, Fig.(5.54). In the right plot of Fig.(5.54), the
coupling constant is displayed versusξ0.
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5.8 Summarized parameters and surface tension in
critical mixtures

Figure 5.55: Scaling function data of investigated binary and ternary mixtures: 5
ethanol-dodecane,• methanol-n-hexane,◦ nitroethane-3-methylpentane,� nitroethane-
cyclohexane,H n-pentanol-nitromethane,~ isobutoxyethanol-water,� triethylalmine-water;
ternary mixturesM α′ non-col,� col, � α′′ non-col.

Parameters which have been obtained from ultrasonic spectrometry, dynamic light scat-
tering and shear viscosity are presented in Table (5.9). It is a fascinating aspect of the
dynamic scaling theory of ultrasonic attenuation that, due to scaling of frequency data
of different critical mixtures fall on one scaling function, Fig.(5.55). However, the most
curious specific system parameter is the characteristic relaxation rate amplitudeΓ0, which
according to Bhattacharjee-Ferrell theory, corresponds with the mutual diffusion coeffi-
cientD and the fluctuation correlation lengthξ. In Table (5.9) parametersΓ0 andξ0 are
listed for various binary mixtures with critical demixing point. The isobutoxyethanol-
water system exhibits by far the smallest amplitudeΓ0 in the relaxation rate of order
parameter fluctuations. In comparison, with the systemn-pentanol-nitromethane,Γ0 is 35
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critical ξ0 Aη Bη Tη qc qD Γ0 SBF |g|
mixture nm 10−6, Pa·s K K 109m−1 109m−1 109s−1 10−5,s0.94m−1

±0.02 ±0.02 ±200 ±20 ±0.04 ±0.04 ±2 ±15% ±0.02
(n-PE-NM) 0.145 0.21 2558 0 187 0.39 187 1.96 0.106
(NE-CH) 0.160 0.55 2537 -57≥ 1000 0.55 156 7.0∗ 0.09∗

(NE-3MP) 0.230 0.23 2877 -84 1.3 0.32 125 2.9 0.29
(ME-HEX)D 0.330 0.29 1500 0.19 1000 0.21 44 0.09 0.11
(EH-DOD)D 0.370 3.80 1728 0 2.4 0.86 6.4 0.07 0.10
(TEA-H2O) 0.107 0.10 4394 0 60 0.9 96 160 0.7

(2,6DMP-H2O) 0.198 0.14 2916 0.20 1000 10 25 3.97 0.17
(i−C4E1/H2O) 0.32 0.16 255[117] 0 5.3 0.6∗ 1.77

(α′) 0.195 0.59 2958 -134 4.40 0.80 124 0.85∗ 0.12
col 0.213 0.61 3174 -174 14.40 0.60 102 1.39∗ 0.17
(α′′) 0.209 0.50 2818 -111 12.89 0.52 117 1.20∗ 0.16

Table 5.9: Parameters of the shear viscosity, diffusion coefficient and ultrasonic spec-
tra of critical mixtures without and with one additional noncritical contribution and
ternary mixtures : exponentD denotes systems with one Debye process;∗ stands for depen-
dence on temperature (in such casesSbg

BF is presented).

times larger. Assuming, that the life time of fluctuationsτξ = Γ−1
0 , as inverse character-

istic relaxation rate reflects intermolecular properties as well the geometry of considered
components the strong variation ofΓ0 of various liquids can be understood. In addition,
due to the Coulombic interactions, relaxation from a local nonequilibrium distribution of
electrical charges into thermal equilibrium will involve extensive redistribution of ions in
ionic solutions and may, therefore, proceed with a smaller relaxation rate than a molec-
ular liquid mixture at the same reduced temperature. A quantity, which may be taken to
summarize the above mentioned molecular properties, is the surface tensionσ. If con-
sidering critical fluctuations, reflected by the fluctuation relaxation rateΓ0, to depend on
the surface tension, a correlation between both quantities should exist. Based on this
idea, Khabibullaev and Mirzaev found a correlation between sound attenuation and sur-
face tension [148], [147]. One of the most important parameters in the determination of
the characteristic relaxation rate is the viscosity. The first relation between surface ten-
sion and viscosity, has been presented by Pelofsky [149] as a relation between these two
thermophysical properties:

lnσ = lnA +
B
ηs

(5.28)

whereA andB are constants,σ is the surface tension, andηs the viscosity. According
to Eq.(5.28), this empirical expression can be applied for pure and mixed components.
Several fluids were shown to follow these relations:n-alkanes, benzene, toluene, xylenes,
phenol and other aromatics,n-alcohols in the range, water and some aqueous solutions.
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Figure 5.56: Characteristic relaxation rate Γ0 versus ideal surface tension accord-
ing to Eq.(5.31): (1) ethanol-dodecane, (2) nitrobenzene-isooctane, (3) nitrobenzene-n-
hexane, (4) methanol-cyclohexane, (5) benzonitrile-isooctane, (6) methanol-n-hexane, (7)
methanol-n-heptane, (8) nitroethane-3-methylpentane, (9) nitroethane-cyclohexane, (10) n-
pentanol-nitromethane, (11) isobutoxyethanol-water, (12) 2,6-dimethylpyridine-water, (13)
triethylalmine-water.

Finally, the Eq.(5.28), gives an additional indication for correlations between surface ten-
sion and mutual diffusion coefficient, and consequently between mutual diffusion and
the fluctuations correlation time. However, it has long been known from experiment that
∂σ/∂x = 0 (x denotes composition) at the critical point [150] in binary mixtures. Theory
predicts more specifically that, as the critical point is approached, the surface tensionσ
as function of reduced temperatureε, vanishes according to power law with an critical
exponentµ:

σ(ε) = σ0εµ (5.29)

The critical exponentµ, is related to the correlation length exponentν̃, by the Widom [12]
scaling law:

µ= (d−1)ν̃ (5.30)

120



5.8 Summarized parameters and surface tension in critical mixtures

in whichd is the spacial dimension of the system. Unfortunately, it is not possible to find
for all considered systems experimental literature data ofσ0, probably, due to experimen-
tal problems in the determination of this quantity. Nevertheless, in [151], an expression for
an ideal surface tension for a mixtureσid

AB has been presented as mole fraction weighted
quantity:

σid
AB = xσA +(1−x)σB, (5.31)

hereA, B denote the components andx the mole fraction (x = xc) at critical composition.
Surface tension data for pure liquids of all components of binary mixtures presented in
Table (5.10) have been found in the literature [151], where for every component the sur-
face tension of four temperatures is listed. Values at temperatures between the tabulated
ones could be obtained by linear interpolation with an error of less than±0.02 mN/m.
Taken into account the critical temperature of a mixtures as well as using the Eq.(5.31)
the surface tensionσid

AB has been calculated, Table (5.10). In order to perform qualitative

critical Γ0 ξ0 σA(Tc) σB(Tc) σid
AB(Tc,xc)

mixture 109s−1 nm mN·m−1 mN·m−1 mN·m−1

± 2 ± 0.02 ± 0.1 ± 0.1 ± 0.1
isobutoxyethanol-water [77] 5.3 0.320 27.69 71.66 70.82

ethanol-dodecane [99] 6.4 0.370 38.62 24.52 34.11
nitrobenzene-isooctane [142] 16 0.300 42.86 20.66 30.09

nitrobenzene-n-hexane [143], [144], [145] 20 0.350 42.28 16.68 27.69
2,6-dimethylpyridine-water [123] 25 0.198 35.44 70.47 68.37

methanol-cyclohexane [70] 27 0.330 20.47 22.20 21.34
benzonitrile-isooctane [146] 39 0.270 21.61 21.82 18.58
methanol-n-heptane [147] 44 0.260 21.30 16.68 18.99
methanol-n-hexane [93] 69 0.350 21.30 18.67 19.98

triethylamine-water [136] 90 0.107 20.89 73.01 69.00
nitroethane-3-methylpentane [86] 125 0.230 31.94 17.45 24.70

nitroethane-cyclohexane [90] 156 0.162 32.34 24.85 28.23
n-pentanol-nitromethane [76] 187 0.145 25.12 37.48 32.72

Table 5.10: Amplitude of the characteristic relaxation rate Γ0, and of the fluctuation
correlation length ξ0, surface tensionσA(Tc), and σB(Tc) of components A, B and ideal
surface tensionσid

AB(Tc,xc) of the mixture, according to Eq.(5.31).

studies of a correlation between characteristic relaxation rate and the surface tension, both
quantities have been plotted against another in Fig.(5.56). Unfortunately, the data points
do not represent any analytical behavior. Nevertheless, the plot displays three groups of
binary critical systems. Group (I) represents binary mixtures, where the characteristic
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5 Experimental Verification of Dynamic Scaling Theories and Discussions

Figure 5.57: Amplitude of the life time of concentration fluctuations in dependence ofX ,
according to Eq.(5.32): (1) ethanol-dodecane, (2) nitrobenzene-isooctane, (3) nitrobenzene-
n-hexane, (4) methanol-cyclohexane, (5) benzonitrile-isooctane, (6) methanol-n-hexane, (7)
methanol-n-heptane, (8) nitroethane-3-methylpentane, (9) nitroethane-cyclohexane, (10) n-
pentanol-nitromethane, (11) isobutoxyethanol-water, (12) 2,6-dimethylpyridine-water, (13)
triethylamine-water.

relaxation rate decreases with increasing surface tension, while group (II) displays an op-
posite trend. The third group (III) shows the behavior of binary aqueous solutions, with
by far the largest surface tension. However, this kind of qualitative studies give an in-
dication that there must exists an additional parameter which interacts additionally with
the surface tension. In fact it has been argued by Fisk and Widom and recognized later
as an aspect of the tow-scale factor universality that there exists a universal combination
of critical amplitudes involving the surface tension amplitudeσ0, [153]. According to
Brézin [154], the simplest way to define the universal combination is to notice that the
free interfacial energy per unit area (divided bykBT), multiplied by an area as defined by
the correlation length, is both temperature independent and universal in the vicinity ofTc.
Owing to this argument, the following expression can be written, [30]:

X =
σ(ε)ξ(ε)2

kBTc
, (5.32)
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5.8 Summarized parameters and surface tension in critical mixtures

whereX = 1/4·πk andk is a dimensionless quantity between 1.39 and 1.57 from theory,
kB, is Boltzmann’s constant andε is the reduced temperature. However, it was also re-
ported in [154], that k lies in the interesting range between 0.5 and 2.00. The Eq.(5.32)
plays a key role in understanding the nature of critical wetting and it is likewise a power-
ful expression, which connects the surface tension and fluctuation correlation length. As
mentioned before, no data of surface tension according to Eq.(5.29) are available in the
literature the quantitatively analyze Eq.(5.32). However, using the same surface tension
values, calculated with the aid of Eq.(5.31), the dependence of the characteristic relaxa-
tion rateΓ0, and accordingly the life time of fluctuations could be studied as a function of
the correlation length as well as surface tension. In fact the qualitative plot of life time of
fluctuationsΓ−1

0 demonstrates a linear dependence on quantityX Fig.(5.57). Once more
it should be underlined, that this are only qualitative studies.
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6 Conclusions and Outlook

In this thesis dynamic light scattering and shear viscosity measurements have been per-
formed and broad band ultrasonic spectrometry was carried out in the frequency range be-
tween 180 kHz and 500 MHz. Evaluating the experimental data for liquid mixtures of crit-
ical composition particular attention has been given to the applicability of Bhattacharjee-
Ferrell dynamic scaling model and to corrections for the effects from the crossover from
Ising to mean-field behavior. Three types of critical liquids have been considered: bi-
nary mixtures without complex background contributions in their ultrasonic spectra (n-
pentanol-nitromethane, nitroethane-cyclohexane, nitroethane-3-methylpentane, methan-
ol-hexane, and ethanol-dodecane), binary mixtures with additional relaxations in the time
domain of critical fluctuations (2,6-dimethylpyridin-water, isobutoxyethanol-water, tri-
ethylamine-water), and ternary mixtures with concentrations selected along the plait-point
line (nitroethane-3-methylpentane-cyclohexane). With the latter system interest has been
particulary directed to the dependence of critical parameters up on the concentration of a
constituent.

In the homogenous region near a consolute point the critical dynamics of binary liq-
uid mixtures without additional sonic relaxations can be consistently represented by the
Bhattacharjee-Ferrell theory. The scaling function of the more recent Onuki and Folk-
Moser theories exhibit systematic deviations from the experimental data. Using the for-
mer theory the scaled half-attenuation frequencyΩ1/2 nicely agrees with the value 2.1
as predicted by Bhattacharjee and Ferrell. An exception is the systemn–pentanol-nitro-
methane for which the slightly smallerΩ1/2 = 1.86 is found. A noteworthy result is the
finding that relaxation rate data from dynamic light scattering and shear viscosity mea-
surements can be used in the theoretical description of the ultrasonic spectra.

In the case of the critical binary mixture nitroethane-cyclohexane an anomalous varia-
tion in the amplitude of the critical contributionSBF has been found. This temperature
dependence is obviously due to a temperature dependence in the adiabatic coupling con-
stantg which results from the predominance of theT dependent thermal expansion coef-
ficient. If this effect is disregarded scaling function data from different temperature runs
do not condense onto one curve. In the critical binary liquids ethanol-dodecane as well
as methanol-hexane a relaxation process, with relaxation time in the nanosecond range
τD = 19.1 ns, andτD = 2 ns, respectively, has been found. It was assigned to a reaction in
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6 Conclusions and Outlook

whichn alcohol molecules associate ton-mers. Assuming this relaxation to contribute its
low frequency wing to the spectra, where special temperature dependent measurements
for the ethanol-dodecane and methanol-hexane mixture of critical composition were per-
formed, leads to an excellent agreement of the experimental scaling function with the
theoretical form of the Bhattacharjee-Ferrell model. This is a noteworthy result because
the evaluation of experimental data needs only one adjustable parameter.

Use of the Bhattacharjee-Ferrell model for the analytical representation of the critical
part in the ultrasonic attenuation spectra of more complicated systems allows for a favor-
able description of further relaxation terms. With the assumption that the contributions
from chemical relaxations contribute additively to the critical contributions the ultrasonic
spectra as well as the scaling function of the critical systems can be well represented
in terms of the Bhattacharjee-Ferrell model. This was shown for the binary mixtures
isobutoxyethanol-water and 2,6-dimethylpyridin-water. The system triethylamine-water,
which includes two Debye-type relaxation terms, reflecting noncritical chemical reac-
tions in addition to the high-frequency part, indicates a coupling between the critical
dynamics and the noncritical relaxation terms. The experimental scaling function agrees
with the Bhattacharjee-Ferrell function only, when both Debye relaxation terms are al-
lowed slow down near the critical point. This is also true for the term that is assigned to
a monomolecular structural isomerization of TEA which is expected to be independent
from fluctuations. This finding may be taken to indicate water to play a noticeable role in
the essentially uni-molecular isomerization. Water probably participates in the relaxation
due to an extensive rearrangement of hydration shells associated with the isomerization
of TEA. Unfortunately, it is difficult to study the behavior of the Debye-type relaxations
without interferences by the critical term in the attenuation spectra. However, the slowing
of critical relaxations near the critical temperature, has been also reported by Procaccia,
Krichevskii and Wheeler.

The results for ternary mixtures demonstrate, that the ternaryα′, col-point andα′′ systems
(nitroethane-3-methylpentane-cyclohexane ) can be also well represented by the empiri-
cal Bhattacharjee-Ferrell scaling function with scaled half attenuation frequencyΩ1/2 =
2.1. For most quantities, such as the characteristic relaxation rate amplitudeΓ0, the am-
plitude of the fluctuation correlation lengthξ0, as well as the background parametersAη,
Bη, andTη of the shear viscosity, an evident dependence on the weight fraction of the
third component (3-methylpentane) results. Especially, studies of the crossover behavior
in dependence of the distance of the reduced temperature from the critical temperature as
well from the used model of background viscosity indicate that only by viscosity measure-
ments in a wide temperature range the correct determination of the fluctuation correlation
length amplitudeξ0 and the cut-off wave numbersqc, qD (and consequentlyΓ0) is guar-
anteed. Furthermore, the results of the low frequency sound attenuation measurements
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do not confirm the conclusion by Mistura that close to the col point the critical absorp-
tion should decrease with increasing number of components. In the case of the ternary
systems of the present thesis this quantities corresponds rather with the fluctuation corre-
lation length from dynamic light scattering. The same correspondence can be found with
the critical amplitudeSBF, which seems to demonstrate the same anomaly as the well
known binary system nitroethane-cyclohexane.

Additionally, in order to more closely consider the large variation of characteristic re-
laxation rate amplitudeΓ0 of various binary systems, its dependence on surface tension
of that quantity has been considered. Unfortunately, there are only insufficient surface
tension data at the critical point. Therefore only a qualitative analysis of such correlation
could be done. This analysis revealed a dependence ofΓ0 on the surface tension.

In summary, the results clearly demonstrate that the Bhattacharjee-Ferrell theory and the
crossover theory nicely represent the experimental ultrasonic attenuation data as well as
the shear viscosity and dynamic light scattering data. This is true for binary and also for
ternary mixtures. Experimental critical exponents agree with those from theory. There
is, however, a necessity for the development of new theories treating the coupling be-
tween chemical relaxations and critical fluctuations. Furthermore, more investigations on
ternary mixtures with the aid of broad-band ultrasonic are necessary to show that the dy-
namic scaling theory of Bhattacharjee-Ferrell applies also to those systems.
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Den LabormitarbeiternKerstin von Roden, Ulrike Schulz, Karola Fritz und David
Gottschalk danke ich f̈ur die Durchf̈uhrung erg̈anzender Messungen.

Allen Mitarbeiterinnen und Mitarbeitern unseres Institutes danke ich für die hilfreiche
Zusammenarbeit, sowie die wundervolle Arbeitsatmosphäre. Bei HerrnDieter Hille und
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